Properties

Label 216000.d.120.by1
Order $ 2^{3} \cdot 3^{2} \cdot 5^{2} $
Index $ 2^{3} \cdot 3 \cdot 5 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2\times C_{15}^2:C_4$
Order: \(1800\)\(\medspace = 2^{3} \cdot 3^{2} \cdot 5^{2} \)
Index: \(120\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \)
Exponent: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Generators: $b^{3}c^{3}, d^{6}f, c^{6}, c^{4}d^{10}, c^{6}d^{15}e^{4}f^{2}, f, d^{20}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, supersolvable (hence solvable and monomial), metabelian, and an A-group.

Ambient group ($G$) information

Description: $D_5^3:\He_3.C_2^3$
Order: \(216000\)\(\medspace = 2^{6} \cdot 3^{3} \cdot 5^{3} \)
Exponent: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Derived length:$4$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$D_5^3:\He_3.C_2^3$, of order \(216000\)\(\medspace = 2^{6} \cdot 3^{3} \cdot 5^{3} \)
$\operatorname{Aut}(H)$ $C_2\times \AGL(2,3)\times C_5^2:C_4.S_5$
$W$$D_5^2.(S_3\times D_6)$, of order \(7200\)\(\medspace = 2^{5} \cdot 3^{2} \cdot 5^{2} \)

Related subgroups

Centralizer: not computed
Normalizer:$C_5^2.C_6^2.C_2^4$
Normal closure:$C_5^3.C_3^2:C_4.C_2^2$
Core:$C_3^2$
Minimal over-subgroups:$C_5^3.C_3^2:C_4.C_2$$C_3:S_3\times C_2\times C_5^2:C_4$$C_{15}^2.C_4.C_2^2$$C_{15}^2.C_2^2.C_2^2$$C_{15}^2.C_2^2.C_2^2$$C_{15}^2.C_4^2$$C_{15}^2.C_4^2$$C_{15}^2.C_4.C_2^2$

Other information

Number of subgroups in this autjugacy class$15$
Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image$D_5^3:\He_3.C_2^3$