Properties

Label 216000.d.12.d1
Order $ 2^{4} \cdot 3^{2} \cdot 5^{3} $
Index $ 2^{2} \cdot 3 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:not computed
Order: \(18000\)\(\medspace = 2^{4} \cdot 3^{2} \cdot 5^{3} \)
Index: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Exponent: not computed
Generators: $f, e^{2}f^{3}, c^{6}d^{15}e^{4}f^{4}, d^{20}, c^{6}, d^{6}f, b^{3}c^{3}, d^{15}e^{5}f^{4}, c^{4}d^{10}$ Copy content Toggle raw display
Derived length: not computed

The subgroup is characteristic (hence normal), a semidirect factor, nonabelian, supersolvable (hence solvable and monomial), metabelian, and an A-group. Whether it is elementary, hyperelementary, monomial, simple, quasisimple, perfect, almost simple, or rational has not been computed.

Ambient group ($G$) information

Description: $D_5^3:\He_3.C_2^3$
Order: \(216000\)\(\medspace = 2^{6} \cdot 3^{3} \cdot 5^{3} \)
Exponent: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Derived length:$4$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Quotient group ($Q$) structure

Description: $D_6$
Order: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Automorphism Group: $D_6$, of order \(12\)\(\medspace = 2^{2} \cdot 3 \)
Outer Automorphisms: $C_2$, of order \(2\)
Derived length: $2$

The quotient is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), hyperelementary for $p = 2$, an A-group, and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$D_5^3:\He_3.C_2^3$, of order \(216000\)\(\medspace = 2^{6} \cdot 3^{3} \cdot 5^{3} \)
$\operatorname{Aut}(H)$ not computed
$W$$D_5^3:\He_3.C_2^3$, of order \(216000\)\(\medspace = 2^{6} \cdot 3^{3} \cdot 5^{3} \)

Related subgroups

Centralizer:$C_1$
Normalizer:$D_5^3:\He_3.C_2^3$
Complements:$D_6$ $D_6$ $D_6$ $D_6$
Minimal over-subgroups:$C_5^3:(C_6^2:C_{12})$$C_3:S_3\times C_5^3:(C_2^2\times C_4)$$C_5^3.C_6^2.C_2^3$$C_5^3.C_6^2.C_2^3$
Maximal under-subgroups:$C_3^2\times C_5^3:C_2^3$$C_5^3.C_3^2:C_4.C_2$$C_5^3.C_3^2:C_4.C_2$$C_5^3.C_6.C_2^3$$C_5^3.C_6.C_2^3$$C_{15}^2.C_4.C_2^2$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image$D_5^3:\He_3.C_2^3$