Properties

Label 216000.d.108.q1
Order $ 2^{4} \cdot 5^{3} $
Index $ 2^{2} \cdot 3^{3} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$D_5^2:F_5$
Order: \(2000\)\(\medspace = 2^{4} \cdot 5^{3} \)
Index: \(108\)\(\medspace = 2^{2} \cdot 3^{3} \)
Exponent: \(20\)\(\medspace = 2^{2} \cdot 5 \)
Generators: $ab^{3}c^{4}d^{9}e^{5}f, e^{2}, e^{5}f, c^{6}e^{5}f^{2}, c^{3}, f, d^{6}e^{2}f^{4}$ Copy content Toggle raw display
Derived length: $3$

The subgroup is nonabelian and monomial (hence solvable).

Ambient group ($G$) information

Description: $D_5^3:\He_3.C_2^3$
Order: \(216000\)\(\medspace = 2^{6} \cdot 3^{3} \cdot 5^{3} \)
Exponent: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Derived length:$4$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$D_5^3:\He_3.C_2^3$, of order \(216000\)\(\medspace = 2^{6} \cdot 3^{3} \cdot 5^{3} \)
$\operatorname{Aut}(H)$ $\GL(2,3)^2:C_2$, of order \(8000\)\(\medspace = 2^{6} \cdot 5^{3} \)
$W$$D_5^3.C_2^2$, of order \(4000\)\(\medspace = 2^{5} \cdot 5^{3} \)

Related subgroups

Centralizer:$S_3$
Normalizer:$C_5^3.C_6.C_2.C_2^4$
Normal closure:$D_5\wr C_3.D_6$
Core:$C_5^3:C_2$
Minimal over-subgroups:$C_3\times C_5^3:(C_2^2:C_4)$$C_5^3.C_6.D_4$$D_5^3:C_4$$D_5^3.C_2^2$$D_5^3.C_2^2$

Other information

Number of subgroups in this autjugacy class$9$
Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image$D_5^3:\He_3.C_2^3$