Subgroup ($H$) information
Description: | $A_6$ |
Order: | \(360\)\(\medspace = 2^{3} \cdot 3^{2} \cdot 5 \) |
Index: | \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \) |
Exponent: | \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \) |
Generators: |
$\langle(10,15,12,11)(13,14), (10,11)(12,13)\rangle$
|
Derived length: | $0$ |
The subgroup is characteristic (hence normal), a direct factor, nonabelian, and simple (hence nonsolvable, perfect, quasisimple, and almost simple).
Ambient group ($G$) information
Description: | $C_5\times A_4\times A_6$ |
Order: | \(21600\)\(\medspace = 2^{5} \cdot 3^{3} \cdot 5^{2} \) |
Exponent: | \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \) |
Derived length: | $2$ |
The ambient group is nonabelian and nonsolvable.
Quotient group ($Q$) structure
Description: | $C_5\times A_4$ |
Order: | \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \) |
Exponent: | \(30\)\(\medspace = 2 \cdot 3 \cdot 5 \) |
Automorphism Group: | $C_4\times S_4$, of order \(96\)\(\medspace = 2^{5} \cdot 3 \) |
Outer Automorphisms: | $C_2\times C_4$, of order \(8\)\(\medspace = 2^{3} \) |
Derived length: | $2$ |
The quotient is nonabelian, monomial (hence solvable), metabelian, and an A-group.
Automorphism information
Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.
$\operatorname{Aut}(G)$ | $C_4\times A_6.C_2^2\times S_4$ |
$\operatorname{Aut}(H)$ | $S_6:C_2$, of order \(1440\)\(\medspace = 2^{5} \cdot 3^{2} \cdot 5 \) |
$W$ | $A_6$, of order \(360\)\(\medspace = 2^{3} \cdot 3^{2} \cdot 5 \) |
Related subgroups
Other information
Möbius function | $-4$ |
Projective image | $C_5\times A_4\times A_6$ |