Properties

Label 21600.bg.540.e1.a1
Order $ 2^{3} \cdot 5 $
Index $ 2^{2} \cdot 3^{3} \cdot 5 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2^2\times C_{10}$
Order: \(40\)\(\medspace = 2^{3} \cdot 5 \)
Index: \(540\)\(\medspace = 2^{2} \cdot 3^{3} \cdot 5 \)
Exponent: \(10\)\(\medspace = 2 \cdot 5 \)
Generators: $\langle(1,2)(3,4)(5,7,8,6,9)(10,13)(11,12), (1,4)(2,3), (1,3)(2,4), (5,7,8,6,9)\rangle$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group) and elementary for $p = 2$ (hence hyperelementary).

Ambient group ($G$) information

Description: $C_5\times A_4\times A_6$
Order: \(21600\)\(\medspace = 2^{5} \cdot 3^{3} \cdot 5^{2} \)
Exponent: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Derived length:$2$

The ambient group is nonabelian and nonsolvable.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_4\times A_6.C_2^2\times S_4$
$\operatorname{Aut}(H)$ $C_4\times \GL(3,2)$, of order \(672\)\(\medspace = 2^{5} \cdot 3 \cdot 7 \)
$W$$C_3$, of order \(3\)

Related subgroups

Centralizer:$C_{20}:C_2^3$
Normalizer:$C_2^4:C_{30}$
Normal closure:$C_2\times C_{10}\times A_6$
Core:$C_2\times C_{10}$
Minimal over-subgroups:$C_{10}\times D_{10}$$C_{10}\times A_4$$C_{10}\times D_6$$C_{10}\times D_6$$C_2^2\times C_{20}$$C_2^3\times C_{10}$$C_2^3\times C_{10}$
Maximal under-subgroups:$C_2\times C_{10}$$C_2\times C_{10}$$C_2\times C_{10}$$C_2^3$

Other information

Number of subgroups in this conjugacy class$45$
Möbius function$20$
Projective image$A_4\times A_6$