Properties

Label 21600.bg.135.a1.a1
Order $ 2^{5} \cdot 5 $
Index $ 3^{3} \cdot 5 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{20}:C_2^3$
Order: \(160\)\(\medspace = 2^{5} \cdot 5 \)
Index: \(135\)\(\medspace = 3^{3} \cdot 5 \)
Exponent: \(20\)\(\medspace = 2^{2} \cdot 5 \)
Generators: $\langle(1,4)(2,3), (1,3)(2,4)(5,9,6,8,7)(11,13)(14,15), (1,3)(2,4), (5,7,8,6,9), (1,4)(2,3)(11,15)(13,14), (1,2)(3,4)(5,8,9,7,6)(10,12)(13,14)\rangle$ Copy content Toggle raw display
Nilpotency class: $2$
Derived length: $2$

The subgroup is nonabelian, elementary for $p = 2$ (hence nilpotent, solvable, supersolvable, monomial, and hyperelementary), and metabelian.

Ambient group ($G$) information

Description: $C_5\times A_4\times A_6$
Order: \(21600\)\(\medspace = 2^{5} \cdot 3^{3} \cdot 5^{2} \)
Exponent: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Derived length:$2$

The ambient group is nonabelian and nonsolvable.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_4\times A_6.C_2^2\times S_4$
$\operatorname{Aut}(H)$ $C_2^7.(C_2^2\times S_4)$, of order \(12288\)\(\medspace = 2^{12} \cdot 3 \)
$W$$C_2\times C_6$, of order \(12\)\(\medspace = 2^{2} \cdot 3 \)

Related subgroups

Centralizer:$C_2^2\times C_{10}$
Normalizer:$C_2^4:C_{30}$
Normal closure:$C_2\times C_{10}\times A_6$
Core:$C_2\times C_{10}$
Minimal over-subgroups:$C_2^4:C_{30}$$C_2\times C_{10}\times S_4$$C_2\times C_{10}\times S_4$
Maximal under-subgroups:$D_4\times C_{10}$$D_4\times C_{10}$$D_4\times C_{10}$$D_4\times C_{10}$$C_2^2\times C_{20}$$C_2^3\times C_{10}$$C_2^3\times C_{10}$$C_2^2\times D_4$

Other information

Number of subgroups in this conjugacy class$45$
Möbius function$-1$
Projective image$A_4\times A_6$