Properties

Label 21600.bg.15.b1.b1
Order $ 2^{5} \cdot 3^{2} \cdot 5 $
Index $ 3 \cdot 5 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$A_4^2:C_{10}$
Order: \(1440\)\(\medspace = 2^{5} \cdot 3^{2} \cdot 5 \)
Index: \(15\)\(\medspace = 3 \cdot 5 \)
Exponent: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Generators: $\langle(5,7,8,6,9), (1,4,2), (2,3,4)(11,15)(13,14), (1,3)(2,4), (1,3)(2,4)(5,9,6,8,7) \!\cdots\! \rangle$ Copy content Toggle raw display
Derived length: $3$

The subgroup is maximal, nonabelian, and monomial (hence solvable).

Ambient group ($G$) information

Description: $C_5\times A_4\times A_6$
Order: \(21600\)\(\medspace = 2^{5} \cdot 3^{3} \cdot 5^{2} \)
Exponent: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Derived length:$2$

The ambient group is nonabelian and nonsolvable.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_4\times A_6.C_2^2\times S_4$
$\operatorname{Aut}(H)$ $C_4\times S_4^2$, of order \(2304\)\(\medspace = 2^{8} \cdot 3^{2} \)
$W$$A_4\times S_4$, of order \(288\)\(\medspace = 2^{5} \cdot 3^{2} \)

Related subgroups

Centralizer:$C_5$
Normalizer:$A_4^2:C_{10}$
Normal closure:$C_5\times A_4\times A_6$
Core:$C_5\times A_4$
Minimal over-subgroups:$C_5\times A_4\times A_6$
Maximal under-subgroups:$C_5\times A_4^2$$C_2^4:C_{30}$$C_2\times C_{10}\times S_4$$C_5\times S_3\times A_4$$C_{15}\times S_4$$A_4\times S_4$
Autjugate subgroups:21600.bg.15.b1.a1

Other information

Number of subgroups in this conjugacy class$15$
Möbius function$-1$
Projective image$A_4\times A_6$