Subgroup ($H$) information
Description: | $C_{15}$ |
Order: | \(15\)\(\medspace = 3 \cdot 5 \) |
Index: | \(1440\)\(\medspace = 2^{5} \cdot 3^{2} \cdot 5 \) |
Exponent: | \(15\)\(\medspace = 3 \cdot 5 \) |
Generators: |
$\langle(1,2,3)(5,9,6,8,7)(10,13,14), (5,7,8,6,9)\rangle$
|
Nilpotency class: | $1$ |
Derived length: | $1$ |
The subgroup is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 3,5$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group).
Ambient group ($G$) information
Description: | $C_5\times A_4\times A_6$ |
Order: | \(21600\)\(\medspace = 2^{5} \cdot 3^{3} \cdot 5^{2} \) |
Exponent: | \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \) |
Derived length: | $2$ |
The ambient group is nonabelian and nonsolvable.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
$\operatorname{Aut}(G)$ | $C_4\times A_6.C_2^2\times S_4$ |
$\operatorname{Aut}(H)$ | $C_2\times C_4$, of order \(8\)\(\medspace = 2^{3} \) |
$W$ | $C_1$, of order $1$ |
Related subgroups
Other information
Number of subgroups in this conjugacy class | $160$ |
Möbius function | $0$ |
Projective image | $A_4\times A_6$ |