Subgroup ($H$) information
| Description: | $C_3^2:C_4\times S_3$ |
| Order: | \(216\)\(\medspace = 2^{3} \cdot 3^{3} \) |
| Index: | \(10\)\(\medspace = 2 \cdot 5 \) |
| Exponent: | \(12\)\(\medspace = 2^{2} \cdot 3 \) |
| Generators: |
$\langle(10,12), (6,14)(7,8), (6,8,13,9)(7,14)(10,11), (10,11,12), (6,14,13), (6,14,13)(7,9,8)\rangle$
|
| Derived length: | $2$ |
The subgroup is characteristic (hence normal), a semidirect factor, nonabelian, monomial (hence solvable), metabelian, and an A-group.
Ambient group ($G$) information
| Description: | $S_3^3:C_{10}$ |
| Order: | \(2160\)\(\medspace = 2^{4} \cdot 3^{3} \cdot 5 \) |
| Exponent: | \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \) |
| Derived length: | $3$ |
The ambient group is nonabelian and monomial (hence solvable).
Quotient group ($Q$) structure
| Description: | $C_{10}$ |
| Order: | \(10\)\(\medspace = 2 \cdot 5 \) |
| Exponent: | \(10\)\(\medspace = 2 \cdot 5 \) |
| Automorphism Group: | $C_4$, of order \(4\)\(\medspace = 2^{2} \) |
| Outer Automorphisms: | $C_4$, of order \(4\)\(\medspace = 2^{2} \) |
| Derived length: | $1$ |
The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 2,5$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group).
Automorphism information
Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $(C_6\times S_3\wr C_2).C_2^3$ |
| $\operatorname{Aut}(H)$ | $F_9:D_6$, of order \(864\)\(\medspace = 2^{5} \cdot 3^{3} \) |
| $\operatorname{res}(\operatorname{Aut}(G))$ | $F_9:D_6$, of order \(864\)\(\medspace = 2^{5} \cdot 3^{3} \) |
| $\card{\operatorname{ker}(\operatorname{res})}$ | \(4\)\(\medspace = 2^{2} \) |
| $W$ | $S_3^3:C_2$, of order \(432\)\(\medspace = 2^{4} \cdot 3^{3} \) |
Related subgroups
Other information
| Möbius function | $1$ |
| Projective image | $S_3^3:C_{10}$ |