Properties

Label 2160.dm.216.b1.b1
Order $ 2 \cdot 5 $
Index $ 2^{3} \cdot 3^{3} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{10}$
Order: \(10\)\(\medspace = 2 \cdot 5 \)
Index: \(216\)\(\medspace = 2^{3} \cdot 3^{3} \)
Exponent: \(10\)\(\medspace = 2 \cdot 5 \)
Generators: $\langle(1,5,4,2,3), (6,9)(7,14)(8,13)\rangle$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 2,5$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group).

Ambient group ($G$) information

Description: $S_3^3:C_{10}$
Order: \(2160\)\(\medspace = 2^{4} \cdot 3^{3} \cdot 5 \)
Exponent: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Derived length:$3$

The ambient group is nonabelian and monomial (hence solvable).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$(C_6\times S_3\wr C_2).C_2^3$
$\operatorname{Aut}(H)$ $C_4$, of order \(4\)\(\medspace = 2^{2} \)
$\operatorname{res}(S)$$C_4$, of order \(4\)\(\medspace = 2^{2} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(72\)\(\medspace = 2^{3} \cdot 3^{2} \)
$W$$C_1$, of order $1$

Related subgroups

Centralizer:$C_{10}\times S_3^2$
Normalizer:$C_{10}\times S_3^2$
Normal closure:$C_5\times S_3^2$
Core:$C_5$
Minimal over-subgroups:$C_{30}$$C_{30}$$C_{30}$$C_5\times S_3$$C_2\times C_{10}$$C_2\times C_{10}$$C_2\times C_{10}$
Maximal under-subgroups:$C_5$$C_2$
Autjugate subgroups:2160.dm.216.b1.a1

Other information

Number of subgroups in this conjugacy class$6$
Möbius function$0$
Projective image$S_3^3:C_2$