Subgroup ($H$) information
| Description: | $C_3^3$ |
| Order: | \(27\)\(\medspace = 3^{3} \) |
| Index: | \(8\)\(\medspace = 2^{3} \) |
| Exponent: | \(3\) |
| Generators: |
$a^{2}, b^{2}, c^{2}$
|
| Nilpotency class: | $1$ |
| Derived length: | $1$ |
The subgroup is characteristic (hence normal), a semidirect factor, abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $3$-Sylow subgroup (hence a Hall subgroup), and a $p$-group (hence elementary and hyperelementary).
Ambient group ($G$) information
| Description: | $C_6^2:C_6$ |
| Order: | \(216\)\(\medspace = 2^{3} \cdot 3^{3} \) |
| Exponent: | \(6\)\(\medspace = 2 \cdot 3 \) |
| Derived length: | $2$ |
The ambient group is nonabelian, supersolvable (hence solvable and monomial), metabelian, and an A-group.
Quotient group ($Q$) structure
| Description: | $C_2^3$ |
| Order: | \(8\)\(\medspace = 2^{3} \) |
| Exponent: | \(2\) |
| Automorphism Group: | $\PSL(2,7)$, of order \(168\)\(\medspace = 2^{3} \cdot 3 \cdot 7 \) |
| Outer Automorphisms: | $\PSL(2,7)$, of order \(168\)\(\medspace = 2^{3} \cdot 3 \cdot 7 \) |
| Nilpotency class: | $1$ |
| Derived length: | $1$ |
The quotient is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), and rational.
Automorphism information
Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $C_6^2:(D_6\times \GL(2,3))$, of order \(20736\)\(\medspace = 2^{8} \cdot 3^{4} \) |
| $\operatorname{Aut}(H)$ | $\GL(3,3)$, of order \(11232\)\(\medspace = 2^{5} \cdot 3^{3} \cdot 13 \) |
| $\operatorname{res}(\operatorname{Aut}(G))$ | $C_2\times \GL(2,3)$, of order \(96\)\(\medspace = 2^{5} \cdot 3 \) |
| $\card{\operatorname{ker}(\operatorname{res})}$ | \(216\)\(\medspace = 2^{3} \cdot 3^{3} \) |
| $W$ | $C_2$, of order \(2\) |
Related subgroups
| Centralizer: | $C_3\times C_6^2$ | ||
| Normalizer: | $C_6^2:C_6$ | ||
| Complements: | $C_2^3$ | ||
| Minimal over-subgroups: | $C_3^2\times C_6$ | $C_3^2:C_6$ | |
| Maximal under-subgroups: | $C_3^2$ | $C_3^2$ | $C_3^2$ |
Other information
| Number of conjugacy classes in this autjugacy class | $1$ |
| Möbius function | $-8$ |
| Projective image | $C_6:D_6$ |