Properties

Label 216.175.24.b1
Order $ 3^{2} $
Index $ 2^{3} \cdot 3 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_3^2$
Order: \(9\)\(\medspace = 3^{2} \)
Index: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Exponent: \(3\)
Generators: $b^{2}, c^{2}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is the commutator subgroup (hence characteristic and normal), a semidirect factor, abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), and metacyclic.

Ambient group ($G$) information

Description: $C_6^2:C_6$
Order: \(216\)\(\medspace = 2^{3} \cdot 3^{3} \)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), metabelian, and an A-group.

Quotient group ($Q$) structure

Description: $C_2^2\times C_6$
Order: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Automorphism Group: $C_2\times \GL(3,2)$, of order \(336\)\(\medspace = 2^{4} \cdot 3 \cdot 7 \)
Outer Automorphisms: $C_2\times \GL(3,2)$, of order \(336\)\(\medspace = 2^{4} \cdot 3 \cdot 7 \)
Nilpotency class: $1$
Derived length: $1$

The quotient is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group) and elementary for $p = 2$ (hence hyperelementary).

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_6^2:(D_6\times \GL(2,3))$, of order \(20736\)\(\medspace = 2^{8} \cdot 3^{4} \)
$\operatorname{Aut}(H)$ $\GL(2,3)$, of order \(48\)\(\medspace = 2^{4} \cdot 3 \)
$\operatorname{res}(\operatorname{Aut}(G))$$\GL(2,3)$, of order \(48\)\(\medspace = 2^{4} \cdot 3 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(432\)\(\medspace = 2^{4} \cdot 3^{3} \)
$W$$C_2$, of order \(2\)

Related subgroups

Centralizer:$C_3\times C_6^2$
Normalizer:$C_6^2:C_6$
Complements:$C_2^2\times C_6$
Minimal over-subgroups:$C_3^3$$C_3\times C_6$$C_3:S_3$
Maximal under-subgroups:$C_3$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function$8$
Projective image$C_6^2:C_6$