Subgroup ($H$) information
Description: | $C_7\times C_{14}$ |
Order: | \(98\)\(\medspace = 2 \cdot 7^{2} \) |
Index: | \(22\)\(\medspace = 2 \cdot 11 \) |
Exponent: | \(14\)\(\medspace = 2 \cdot 7 \) |
Generators: |
$a^{14}, b^{22}, a^{4}$
|
Nilpotency class: | $1$ |
Derived length: | $1$ |
The subgroup is characteristic (hence normal), abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), elementary for $p = 7$ (hence hyperelementary), and metacyclic.
Ambient group ($G$) information
Description: | $C_{77}:C_{28}$ |
Order: | \(2156\)\(\medspace = 2^{2} \cdot 7^{2} \cdot 11 \) |
Exponent: | \(308\)\(\medspace = 2^{2} \cdot 7 \cdot 11 \) |
Derived length: | $2$ |
The ambient group is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and an A-group.
Quotient group ($Q$) structure
Description: | $D_{11}$ |
Order: | \(22\)\(\medspace = 2 \cdot 11 \) |
Exponent: | \(22\)\(\medspace = 2 \cdot 11 \) |
Automorphism Group: | $F_{11}$, of order \(110\)\(\medspace = 2 \cdot 5 \cdot 11 \) |
Outer Automorphisms: | $C_5$, of order \(5\) |
Nilpotency class: | $-1$ |
Derived length: | $2$ |
The quotient is nonabelian, a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group), and hyperelementary for $p = 2$.
Automorphism information
Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.
$\operatorname{Aut}(G)$ | $C_{77}.C_{15}.C_6.C_2^3$ |
$\operatorname{Aut}(H)$ | $\GL(2,7)$, of order \(2016\)\(\medspace = 2^{5} \cdot 3^{2} \cdot 7 \) |
$\operatorname{res}(\operatorname{Aut}(G))$ | $C_6^2$, of order \(36\)\(\medspace = 2^{2} \cdot 3^{2} \) |
$\card{\operatorname{ker}(\operatorname{res})}$ | \(1540\)\(\medspace = 2^{2} \cdot 5 \cdot 7 \cdot 11 \) |
$W$ | $C_2$, of order \(2\) |
Related subgroups
Centralizer: | $C_7\times C_{154}$ | |||||
Normalizer: | $C_{77}:C_{28}$ | |||||
Minimal over-subgroups: | $C_7\times C_{154}$ | $C_7:C_{28}$ | ||||
Maximal under-subgroups: | $C_7^2$ | $C_{14}$ | $C_{14}$ | $C_{14}$ | $C_{14}$ | $C_{14}$ |
Other information
Möbius function | $11$ |
Projective image | $D_{77}$ |