Properties

Label 2156.g.154.b1.a1
Order $ 2 \cdot 7 $
Index $ 2 \cdot 7 \cdot 11 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{14}$
Order: \(14\)\(\medspace = 2 \cdot 7 \)
Index: \(154\)\(\medspace = 2 \cdot 7 \cdot 11 \)
Exponent: \(14\)\(\medspace = 2 \cdot 7 \)
Generators: $a^{14}, b^{22}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is characteristic (hence normal) and cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 2,7$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group).

Ambient group ($G$) information

Description: $C_{77}:C_{28}$
Order: \(2156\)\(\medspace = 2^{2} \cdot 7^{2} \cdot 11 \)
Exponent: \(308\)\(\medspace = 2^{2} \cdot 7 \cdot 11 \)
Derived length:$2$

The ambient group is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and an A-group.

Quotient group ($Q$) structure

Description: $C_7\times D_{11}$
Order: \(154\)\(\medspace = 2 \cdot 7 \cdot 11 \)
Exponent: \(154\)\(\medspace = 2 \cdot 7 \cdot 11 \)
Automorphism Group: $C_6\times F_{11}$, of order \(660\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \cdot 11 \)
Outer Automorphisms: $C_{30}$, of order \(30\)\(\medspace = 2 \cdot 3 \cdot 5 \)
Nilpotency class: $-1$
Derived length: $2$

The quotient is nonabelian, a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group), and hyperelementary for $p = 2$.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{77}.C_{15}.C_6.C_2^3$
$\operatorname{Aut}(H)$ $C_6$, of order \(6\)\(\medspace = 2 \cdot 3 \)
$\operatorname{res}(\operatorname{Aut}(G))$$C_6$, of order \(6\)\(\medspace = 2 \cdot 3 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(9240\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \cdot 7 \cdot 11 \)
$W$$C_2$, of order \(2\)

Related subgroups

Centralizer:$C_7\times C_{154}$
Normalizer:$C_{77}:C_{28}$
Minimal over-subgroups:$C_{154}$$C_7\times C_{14}$$C_7:C_4$
Maximal under-subgroups:$C_7$$C_2$

Other information

Möbius function$-11$
Projective image$C_7\times D_{77}$