Subgroup ($H$) information
Description: | $C_3^2:D_6\times S_4$ |
Order: | \(2592\)\(\medspace = 2^{5} \cdot 3^{4} \) |
Index: | \(8\)\(\medspace = 2^{3} \) |
Exponent: | \(12\)\(\medspace = 2^{2} \cdot 3 \) |
Generators: |
$\langle(7,15,11)(8,13,12)(9,14,10), (7,10)(8,11)(9,12), (5,6)(7,11)(8,12)(9,10) \!\cdots\! \rangle$
|
Derived length: | $3$ |
The subgroup is nonabelian and monomial (hence solvable).
Ambient group ($G$) information
Description: | $C_6^2:(D_6\times \GL(2,3))$ |
Order: | \(20736\)\(\medspace = 2^{8} \cdot 3^{4} \) |
Exponent: | \(24\)\(\medspace = 2^{3} \cdot 3 \) |
Derived length: | $5$ |
The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
$\operatorname{Aut}(G)$ | $C_3:S_3.A_4^2.C_2^4$ |
$\operatorname{Aut}(H)$ | $S_4\times \AGL(2,3).C_2^2$ |
$W$ | $S_4\times S_3^2$, of order \(864\)\(\medspace = 2^{5} \cdot 3^{3} \) |
Related subgroups
Other information
Number of subgroups in this autjugacy class | $4$ |
Number of conjugacy classes in this autjugacy class | $1$ |
Möbius function | not computed |
Projective image | $S_4\times C_3^2:\GL(2,3)$ |