Properties

Label 20736.mt.8.c2
Order $ 2^{5} \cdot 3^{4} $
Index $ 2^{3} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_3^2:D_6\times S_4$
Order: \(2592\)\(\medspace = 2^{5} \cdot 3^{4} \)
Index: \(8\)\(\medspace = 2^{3} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Generators: $\langle(7,15,11)(8,13,12)(9,14,10), (7,10)(8,11)(9,12), (5,6)(7,11)(8,12)(9,10) \!\cdots\! \rangle$ Copy content Toggle raw display
Derived length: $3$

The subgroup is nonabelian and monomial (hence solvable).

Ambient group ($G$) information

Description: $C_6^2:(D_6\times \GL(2,3))$
Order: \(20736\)\(\medspace = 2^{8} \cdot 3^{4} \)
Exponent: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Derived length:$5$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_3:S_3.A_4^2.C_2^4$
$\operatorname{Aut}(H)$ $S_4\times \AGL(2,3).C_2^2$
$W$$S_4\times S_3^2$, of order \(864\)\(\medspace = 2^{5} \cdot 3^{3} \)

Related subgroups

Centralizer:$C_6$
Normalizer:$C_6^2:D_6^2$
Normal closure:$C_6^2:(D_6\times \GL(2,3))$
Core:$A_4:C_6^2$
Minimal over-subgroups:$C_6^2:D_6^2$
Maximal under-subgroups:$C_2\times S_4\times \He_3$$C_3^2:D_6\times A_4$$C_2\times \He_3:S_4$$C_6^2:S_3^2$$C_2\times C_6^2:D_6$$C_6\times S_3\times S_4$$C_6\times S_3\times S_4$$C_6\times S_3\times S_4$$S_3\times C_3^2:D_6$

Other information

Number of subgroups in this autjugacy class$4$
Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image$S_4\times C_3^2:\GL(2,3)$