Properties

Label 20736.mt.48.a1
Order $ 2^{4} \cdot 3^{3} $
Index $ 2^{4} \cdot 3 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$A_4:C_6^2$
Order: \(432\)\(\medspace = 2^{4} \cdot 3^{3} \)
Index: \(48\)\(\medspace = 2^{4} \cdot 3 \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Generators: $\langle(3,4)(5,6)(7,15,11)(8,13,12)(9,14,10), (7,13,10)(8,14,11)(9,15,12), (1,3,6) \!\cdots\! \rangle$ Copy content Toggle raw display
Derived length: $3$

The subgroup is characteristic (hence normal), a semidirect factor, nonabelian, and monomial (hence solvable).

Ambient group ($G$) information

Description: $C_6^2:(D_6\times \GL(2,3))$
Order: \(20736\)\(\medspace = 2^{8} \cdot 3^{4} \)
Exponent: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Derived length:$5$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Quotient group ($Q$) structure

Description: $\GL(2,3)$
Order: \(48\)\(\medspace = 2^{4} \cdot 3 \)
Exponent: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Automorphism Group: $C_2\times S_4$, of order \(48\)\(\medspace = 2^{4} \cdot 3 \)
Outer Automorphisms: $C_2$, of order \(2\)
Derived length: $4$

The quotient is nonabelian and solvable.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_3:S_3.A_4^2.C_2^4$
$\operatorname{Aut}(H)$ $C_2^2.S_4^2$, of order \(2304\)\(\medspace = 2^{8} \cdot 3^{2} \)
$W$$S_4\times \GL(2,3)$, of order \(1152\)\(\medspace = 2^{7} \cdot 3^{2} \)

Related subgroups

Centralizer:$C_3\times C_6$
Normalizer:$C_6^2:(D_6\times \GL(2,3))$
Complements:$\GL(2,3)$ $\GL(2,3)$ $\GL(2,3)$ $\GL(2,3)$ $\GL(2,3)$
Minimal over-subgroups:$C_2\times S_4\times \He_3$$C_6:S_3\times S_4$$C_6\times S_3\times S_4$
Maximal under-subgroups:$C_6^2:C_6$$C_3^2\times S_4$$C_4:C_6^2$$C_6\times S_4$$C_3^2\times D_6$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image$S_4\times C_3^2:\GL(2,3)$