Subgroup ($H$) information
Description: | $A_4:C_6^2$ |
Order: | \(432\)\(\medspace = 2^{4} \cdot 3^{3} \) |
Index: | \(48\)\(\medspace = 2^{4} \cdot 3 \) |
Exponent: | \(12\)\(\medspace = 2^{2} \cdot 3 \) |
Generators: |
$\langle(3,4)(5,6)(7,15,11)(8,13,12)(9,14,10), (7,13,10)(8,14,11)(9,15,12), (1,3,6) \!\cdots\! \rangle$
|
Derived length: | $3$ |
The subgroup is characteristic (hence normal), a semidirect factor, nonabelian, and monomial (hence solvable).
Ambient group ($G$) information
Description: | $C_6^2:(D_6\times \GL(2,3))$ |
Order: | \(20736\)\(\medspace = 2^{8} \cdot 3^{4} \) |
Exponent: | \(24\)\(\medspace = 2^{3} \cdot 3 \) |
Derived length: | $5$ |
The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.
Quotient group ($Q$) structure
Description: | $\GL(2,3)$ |
Order: | \(48\)\(\medspace = 2^{4} \cdot 3 \) |
Exponent: | \(24\)\(\medspace = 2^{3} \cdot 3 \) |
Automorphism Group: | $C_2\times S_4$, of order \(48\)\(\medspace = 2^{4} \cdot 3 \) |
Outer Automorphisms: | $C_2$, of order \(2\) |
Derived length: | $4$ |
The quotient is nonabelian and solvable.
Automorphism information
Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.
$\operatorname{Aut}(G)$ | $C_3:S_3.A_4^2.C_2^4$ |
$\operatorname{Aut}(H)$ | $C_2^2.S_4^2$, of order \(2304\)\(\medspace = 2^{8} \cdot 3^{2} \) |
$W$ | $S_4\times \GL(2,3)$, of order \(1152\)\(\medspace = 2^{7} \cdot 3^{2} \) |
Related subgroups
Other information
Number of conjugacy classes in this autjugacy class | $1$ |
Möbius function | not computed |
Projective image | $S_4\times C_3^2:\GL(2,3)$ |