Properties

Label 20736.je.3.a1
Order $ 2^{8} \cdot 3^{3} $
Index $ 3 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:not computed
Order: \(6912\)\(\medspace = 2^{8} \cdot 3^{3} \)
Index: \(3\)
Exponent: not computed
Generators: $\langle(16,17), (3,4,6), (2,5,9)(3,6,4), (4,6)(5,9), (1,8,7)(3,4,6), (5,9)(7,8) \!\cdots\! \rangle$ Copy content Toggle raw display
Derived length: not computed

The subgroup is maximal, nonabelian, and solvable. Whether it is elementary, hyperelementary, monomial, simple, quasisimple, perfect, almost simple, or rational has not been computed.

Ambient group ($G$) information

Description: $C_2^2\times S_3^3:S_4$
Order: \(20736\)\(\medspace = 2^{8} \cdot 3^{4} \)
Exponent: \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Derived length:$4$

The ambient group is nonabelian, solvable, and rational. Whether it is monomial has not been computed.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_5^4:(C_2\times C_4)$, of order \(995328\)\(\medspace = 2^{12} \cdot 3^{5} \)
$\operatorname{Aut}(H)$ not computed
$W$$S_3^3:C_2^2$, of order \(864\)\(\medspace = 2^{5} \cdot 3^{3} \)

Related subgroups

Centralizer: not computed
Normalizer:$C_2^2\times C_3^3.C_2^5.C_2$
Normal closure:$C_2^2\times S_3^3:S_4$
Core:$C_2^3\times C_2\times S_3^3$

Other information

Number of subgroups in this autjugacy class$3$
Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image$S_3^3:S_4$