Properties

Label 20736.im.27.A
Order $ 2^{8} \cdot 3 $
Index $ 3^{3} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2^3:\GL(2,\mathbb{Z}/4)$
Order: \(768\)\(\medspace = 2^{8} \cdot 3 \)
Index: \(27\)\(\medspace = 3^{3} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Generators: $\langle(15,17), (3,9)(5,8)(6,7)(10,11,12,13)(14,15,16,17), (3,5)(8,9)(10,12)(11,13) \!\cdots\! \rangle$ Copy content Toggle raw display
Derived length: $3$

The subgroup is maximal, nonabelian, and monomial (hence solvable).

Ambient group ($G$) information

Description: $S_3^3.\GL(2,\mathbb{Z}/4)$
Order: \(20736\)\(\medspace = 2^{8} \cdot 3^{4} \)
Exponent: \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Derived length:$4$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$D_5^3.C_4$, of order \(82944\)\(\medspace = 2^{10} \cdot 3^{4} \)
$\operatorname{Aut}(H)$ $A_4^2.C_2^5.C_2^2$
$W$$C_2^3:S_4$, of order \(192\)\(\medspace = 2^{6} \cdot 3 \)

Related subgroups

Centralizer: not computed
Normalizer:$C_2^3:\GL(2,\mathbb{Z}/4)$
Normal closure:$S_3^3.\GL(2,\mathbb{Z}/4)$
Core:$C_2^4$

Other information

Number of subgroups in this autjugacy class$27$
Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image$C_5^4:(C_2^2\times C_4)$