Properties

Label 20736.dx.24.BJ
Order $ 2^{5} \cdot 3^{3} $
Index $ 2^{3} \cdot 3 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_6^2:S_4$
Order: \(864\)\(\medspace = 2^{5} \cdot 3^{3} \)
Index: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Generators: $\langle(12,19,16)(14,15,18), (1,2)(3,5)(4,7)(6,8)(9,11)(12,13,16,17,19,20)(15,18) \!\cdots\! \rangle$ Copy content Toggle raw display
Derived length: $3$

The subgroup is nonabelian and monomial (hence solvable).

Ambient group ($G$) information

Description: $(C_2^3\times C_6^3):D_6$
Order: \(20736\)\(\medspace = 2^{8} \cdot 3^{4} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Derived length:$3$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2\times C_7^3:C_6$, of order \(165888\)\(\medspace = 2^{11} \cdot 3^{4} \)
$\operatorname{Aut}(H)$ $(C_2^3\times C_6).S_3^3$
$W$$C_3^2:S_4$, of order \(216\)\(\medspace = 2^{3} \cdot 3^{3} \)

Related subgroups

Centralizer:$C_2^2$
Normalizer:$C_6^2:S_4$
Normal closure:$C_2^2\times C_2^4.C_3^3:S_3$
Core:$C_2^2\times C_6^2$
Minimal over-subgroups:$C_2^2\times C_2^4:\He_3.C_2$$C_2^2\times (C_3^2\times A_4).C_6$

Other information

Number of subgroups in this autjugacy class$24$
Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image not computed