Properties

Label 2048.cnj.1.a1.a1
Order $ 2^{11} $
Index $ 1 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2^5.C_2\wr C_4$
Order: \(2048\)\(\medspace = 2^{11} \)
Index: $1$
Exponent: \(16\)\(\medspace = 2^{4} \)
Generators: $\langle(1,4,6,8,2,3,5,7)(9,16,13,11,10,15,14,12), (3,4)(7,8)(11,12)(15,16), (7,8) \!\cdots\! \rangle$ Copy content Toggle raw display
Nilpotency class: $8$
Derived length: $3$

The subgroup is the Fitting subgroup (hence characteristic, normal, nilpotent, solvable, supersolvable, and monomial), the radical, a direct factor, nonabelian, a $2$-Sylow subgroup (hence a Hall subgroup), and a $p$-group (hence elementary and hyperelementary).

Ambient group ($G$) information

Description: $C_2^5.C_2\wr C_4$
Order: \(2048\)\(\medspace = 2^{11} \)
Exponent: \(16\)\(\medspace = 2^{4} \)
Nilpotency class:$8$
Derived length:$3$

The ambient group is nonabelian and a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary).

Quotient group ($Q$) structure

Description: $C_1$
Order: $1$
Exponent: $1$
Automorphism Group: $C_1$, of order $1$
Outer Automorphisms: $C_1$, of order $1$
Nilpotency class: $0$
Derived length: $0$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary (for every $p$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group (for every $p$), perfect, and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2\times C_2^5.C_2^5.C_2^3$, of order \(16384\)\(\medspace = 2^{14} \)
$\operatorname{Aut}(H)$ $C_2\times C_2^5.C_2^5.C_2^3$, of order \(16384\)\(\medspace = 2^{14} \)
$\card{W}$\(1024\)\(\medspace = 2^{10} \)

Related subgroups

Centralizer:$C_2$
Normalizer:$C_2^5.C_2\wr C_4$
Complements:$C_1$
Maximal under-subgroups:$C_2^5.C_2^4.C_2$$C_2^6.\OD_{16}$$C_2^6.\OD_{16}$

Other information

Möbius function$1$
Projective image not computed