Subgroup ($H$) information
| Description: | $C_2^2\times C_8$ |
| Order: | \(32\)\(\medspace = 2^{5} \) |
| Index: | \(64\)\(\medspace = 2^{6} \) |
| Exponent: | \(8\)\(\medspace = 2^{3} \) |
| Generators: |
$\left(\begin{array}{rr}
31 & 0 \\
0 & 31
\end{array}\right), \left(\begin{array}{rr}
1 & 16 \\
0 & 17
\end{array}\right), \left(\begin{array}{rr}
1 & 4 \\
0 & 25
\end{array}\right)$
|
| Nilpotency class: | $1$ |
| Derived length: | $1$ |
The subgroup is normal, abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), and a $p$-group (hence elementary and hyperelementary).
Ambient group ($G$) information
| Description: | $C_8^2.C_2^5$ |
| Order: | \(2048\)\(\medspace = 2^{11} \) |
| Exponent: | \(16\)\(\medspace = 2^{4} \) |
| Nilpotency class: | $2$ |
| Derived length: | $2$ |
The ambient group is nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), and metabelian.
Quotient group ($Q$) structure
| Description: | $C_8.C_2^3$ |
| Order: | \(64\)\(\medspace = 2^{6} \) |
| Exponent: | \(8\)\(\medspace = 2^{3} \) |
| Automorphism Group: | $C_2^7:D_6$, of order \(1536\)\(\medspace = 2^{9} \cdot 3 \) |
| Outer Automorphisms: | $\GL(2,\mathbb{Z}/4):C_2^2$, of order \(384\)\(\medspace = 2^{7} \cdot 3 \) |
| Nilpotency class: | $2$ |
| Derived length: | $2$ |
The quotient is nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), and metabelian.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
| $\operatorname{Aut}(G)$ | Group of order \(67108864\)\(\medspace = 2^{26} \) |
| $\operatorname{Aut}(H)$ | $C_2^4:S_4$, of order \(384\)\(\medspace = 2^{7} \cdot 3 \) |
| $\operatorname{res}(S)$ | $C_2^2\times D_4$, of order \(32\)\(\medspace = 2^{5} \) |
| $\card{\operatorname{ker}(\operatorname{res})}$ | \(131072\)\(\medspace = 2^{17} \) |
| $W$ | $C_2$, of order \(2\) |
Related subgroups
Other information
| Number of subgroups in this autjugacy class | $16$ |
| Number of conjugacy classes in this autjugacy class | $16$ |
| Möbius function | $0$ |
| Projective image | $C_8.C_2^4$ |