Properties

Label 2048.bky.32.KT
Order $ 2^{6} $
Index $ 2^{5} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2^3\times C_8$
Order: \(64\)\(\medspace = 2^{6} \)
Index: \(32\)\(\medspace = 2^{5} \)
Exponent: \(8\)\(\medspace = 2^{3} \)
Generators: $\left(\begin{array}{rr} 31 & 16 \\ 16 & 31 \end{array}\right), \left(\begin{array}{rr} 31 & 0 \\ 0 & 31 \end{array}\right), \left(\begin{array}{rr} 1 & 16 \\ 0 & 17 \end{array}\right), \left(\begin{array}{rr} 1 & 4 \\ 0 & 25 \end{array}\right)$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group) and a $p$-group (hence elementary and hyperelementary).

Ambient group ($G$) information

Description: $C_8^2.C_2^5$
Order: \(2048\)\(\medspace = 2^{11} \)
Exponent: \(16\)\(\medspace = 2^{4} \)
Nilpotency class:$2$
Derived length:$2$

The ambient group is nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), and metabelian.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$Group of order \(67108864\)\(\medspace = 2^{26} \)
$\operatorname{Aut}(H)$ $C_2.C_2^7:\GL(3,2)$, of order \(43008\)\(\medspace = 2^{11} \cdot 3 \cdot 7 \)
$\operatorname{res}(S)$$C_2^5:D_4$, of order \(256\)\(\medspace = 2^{8} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(8192\)\(\medspace = 2^{13} \)
$W$$C_1$, of order $1$

Related subgroups

Centralizer:$C_2^3\times C_8\times C_{16}$
Normalizer:$C_2^3\times C_8\times C_{16}$
Normal closure:$C_2^4\times C_8$
Core:$C_2^2\times C_8$
Minimal over-subgroups:$C_2^4\times C_8$$C_2^3\times C_{16}$
Maximal under-subgroups:$C_2^2\times C_8$$C_2^2\times C_8$$C_2^2\times C_8$$C_2^3\times C_4$$C_2^2\times C_8$$C_2^2\times C_8$$C_2^2\times C_8$

Other information

Number of subgroups in this autjugacy class$32$
Number of conjugacy classes in this autjugacy class$16$
Möbius function$0$
Projective image$C_8.C_2^4$