Subgroup ($H$) information
Description: | $C_3\times C_5\wr S_3$ |
Order: | \(2250\)\(\medspace = 2 \cdot 3^{2} \cdot 5^{3} \) |
Index: | \(9\)\(\medspace = 3^{2} \) |
Exponent: | \(30\)\(\medspace = 2 \cdot 3 \cdot 5 \) |
Generators: |
$a^{15}, d^{3}, a^{6}, bc^{14}, c^{10}, c^{3}d^{3}$
|
Derived length: | $3$ |
The subgroup is nonabelian, monomial (hence solvable), and an A-group.
Ambient group ($G$) information
Description: | $C_{15}\wr S_3$ |
Order: | \(20250\)\(\medspace = 2 \cdot 3^{4} \cdot 5^{3} \) |
Exponent: | \(90\)\(\medspace = 2 \cdot 3^{2} \cdot 5 \) |
Derived length: | $3$ |
The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
$\operatorname{Aut}(G)$ | $C_{15}^2.C_6^2.C_2^4$ |
$\operatorname{Aut}(H)$ | $(C_2\times C_5^2:C_6).C_2^4$ |
$W$ | $C_5^2:S_3$, of order \(150\)\(\medspace = 2 \cdot 3 \cdot 5^{2} \) |
Related subgroups
Other information
Number of subgroups in this autjugacy class | $9$ |
Number of conjugacy classes in this autjugacy class | $1$ |
Möbius function | $0$ |
Projective image | $C_{15}^2:S_3$ |