Properties

Label 20250.f.810.b1
Order $ 5^{2} $
Index $ 2 \cdot 3^{4} \cdot 5 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_5^2$
Order: \(25\)\(\medspace = 5^{2} \)
Index: \(810\)\(\medspace = 2 \cdot 3^{4} \cdot 5 \)
Exponent: \(5\)
Generators: $a^{6}d^{3}, c^{3}d^{3}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), and metacyclic.

Ambient group ($G$) information

Description: $C_{15}\wr S_3$
Order: \(20250\)\(\medspace = 2 \cdot 3^{4} \cdot 5^{3} \)
Exponent: \(90\)\(\medspace = 2 \cdot 3^{2} \cdot 5 \)
Derived length:$3$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{15}^2.C_6^2.C_2^4$
$\operatorname{Aut}(H)$ $\GL(2,5)$, of order \(480\)\(\medspace = 2^{5} \cdot 3 \cdot 5 \)
$W$$C_1$, of order $1$

Related subgroups

Centralizer:$C_3\times C_{15}\times C_5\times D_{15}$
Normalizer:$C_3\times C_{15}\times C_5\times D_{15}$
Normal closure:$C_5^3$
Core:$C_5$
Minimal over-subgroups:$C_5^3$$C_5\times C_{15}$$C_5\times C_{15}$$C_5\times C_{15}$$C_5\times C_{15}$$C_5\times C_{15}$$C_5\times C_{10}$
Maximal under-subgroups:$C_5$$C_5$$C_5$

Other information

Number of subgroups in this autjugacy class$3$
Number of conjugacy classes in this autjugacy class$1$
Möbius function$0$
Projective image$(C_3\times C_{15}^2):S_3$