Subgroup ($H$) information
Description: | $C_5^4:(C_2\times \OD_{16})$ |
Order: | \(20000\)\(\medspace = 2^{5} \cdot 5^{4} \) |
Index: | $1$ |
Exponent: | \(40\)\(\medspace = 2^{3} \cdot 5 \) |
Generators: |
$f, ef, b, cd^{8}e^{2}f^{2}, a^{2}, d^{2}f, a, d^{5}, b^{2}c^{2}e$
|
Derived length: | $3$ |
The subgroup is the radical (hence characteristic, normal, and solvable), a direct factor, nonabelian, and a Hall subgroup. Whether it is monomial has not been computed.
Ambient group ($G$) information
Description: | $C_5^4:(C_2\times \OD_{16})$ |
Order: | \(20000\)\(\medspace = 2^{5} \cdot 5^{4} \) |
Exponent: | \(40\)\(\medspace = 2^{3} \cdot 5 \) |
Derived length: | $3$ |
The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.
Quotient group ($Q$) structure
Description: | $C_1$ |
Order: | $1$ |
Exponent: | $1$ |
Automorphism Group: | $C_1$, of order $1$ |
Outer Automorphisms: | $C_1$, of order $1$ |
Derived length: | $0$ |
The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary (for every $p$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group (for every $p$), perfect, and rational.
Automorphism information
Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.
$\operatorname{Aut}(G)$ | $D_5^4.D_4:D_4$, of order \(640000\)\(\medspace = 2^{10} \cdot 5^{4} \) |
$\operatorname{Aut}(H)$ | $D_5^4.D_4:D_4$, of order \(640000\)\(\medspace = 2^{10} \cdot 5^{4} \) |
$W$ | $C_5^4:(C_2\times \OD_{16})$, of order \(20000\)\(\medspace = 2^{5} \cdot 5^{4} \) |
Related subgroups
Centralizer: | $C_1$ | |||
Normalizer: | $C_5^4:(C_2\times \OD_{16})$ | |||
Complements: | $C_1$ | |||
Maximal under-subgroups: | $C_5^4:(C_2^2\times C_4)$ | $C_5^4:(C_2\times C_8)$ | $C_5^4.\OD_{16}$ | $C_2\times C_5^2:\OD_{16}$ |
Other information
Number of conjugacy classes in this autjugacy class | $1$ |
Möbius function | $1$ |
Projective image | $C_5^4:(C_2\times \OD_{16})$ |