Properties

Label 20000.be.1.a1
Order $ 2^{5} \cdot 5^{4} $
Index $ 1 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_5^4:(C_2\times \OD_{16})$
Order: \(20000\)\(\medspace = 2^{5} \cdot 5^{4} \)
Index: $1$
Exponent: \(40\)\(\medspace = 2^{3} \cdot 5 \)
Generators: $f, ef, b, cd^{8}e^{2}f^{2}, a^{2}, d^{2}f, a, d^{5}, b^{2}c^{2}e$ Copy content Toggle raw display
Derived length: $3$

The subgroup is the radical (hence characteristic, normal, and solvable), a direct factor, nonabelian, and a Hall subgroup. Whether it is monomial has not been computed.

Ambient group ($G$) information

Description: $C_5^4:(C_2\times \OD_{16})$
Order: \(20000\)\(\medspace = 2^{5} \cdot 5^{4} \)
Exponent: \(40\)\(\medspace = 2^{3} \cdot 5 \)
Derived length:$3$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Quotient group ($Q$) structure

Description: $C_1$
Order: $1$
Exponent: $1$
Automorphism Group: $C_1$, of order $1$
Outer Automorphisms: $C_1$, of order $1$
Derived length: $0$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary (for every $p$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group (for every $p$), perfect, and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$D_5^4.D_4:D_4$, of order \(640000\)\(\medspace = 2^{10} \cdot 5^{4} \)
$\operatorname{Aut}(H)$ $D_5^4.D_4:D_4$, of order \(640000\)\(\medspace = 2^{10} \cdot 5^{4} \)
$W$$C_5^4:(C_2\times \OD_{16})$, of order \(20000\)\(\medspace = 2^{5} \cdot 5^{4} \)

Related subgroups

Centralizer:$C_1$
Normalizer:$C_5^4:(C_2\times \OD_{16})$
Complements:$C_1$
Maximal under-subgroups:$C_5^4:(C_2^2\times C_4)$$C_5^4:(C_2\times C_8)$$C_5^4.\OD_{16}$$C_2\times C_5^2:\OD_{16}$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function$1$
Projective image$C_5^4:(C_2\times \OD_{16})$