Properties

Label 2000.957.80.d1
Order $ 5^{2} $
Index $ 2^{4} \cdot 5 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_5^2$
Order: \(25\)\(\medspace = 5^{2} \)
Index: \(80\)\(\medspace = 2^{4} \cdot 5 \)
Exponent: \(5\)
Generators: $b^{2}d^{2}, c^{2}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), and metacyclic.

Ambient group ($G$) information

Description: $C_5\times D_{10}^2$
Order: \(2000\)\(\medspace = 2^{4} \cdot 5^{3} \)
Exponent: \(10\)\(\medspace = 2 \cdot 5 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), metabelian, and an A-group.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{10}^2.A_4.C_4^3.C_2^2$
$\operatorname{Aut}(H)$ $\GL(2,5)$, of order \(480\)\(\medspace = 2^{5} \cdot 3 \cdot 5 \)
$\operatorname{res}(S)$$C_4^2$, of order \(16\)\(\medspace = 2^{4} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(2400\)\(\medspace = 2^{5} \cdot 3 \cdot 5^{2} \)
$W$$C_2$, of order \(2\)

Related subgroups

Centralizer:$C_5\times C_{10}^2$
Normalizer:$D_5\times C_{10}^2$
Normal closure:$C_5^3$
Core:$C_5$
Minimal over-subgroups:$C_5^3$$C_5\times C_{10}$$C_5\times D_5$
Maximal under-subgroups:$C_5$$C_5$$C_5$

Other information

Number of subgroups in this autjugacy class$8$
Number of conjugacy classes in this autjugacy class$4$
Möbius function$0$
Projective image$C_5\times D_{10}^2$