Properties

Label 2000.505.80.c1
Order $ 5^{2} $
Index $ 2^{4} \cdot 5 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{25}$
Order: \(25\)\(\medspace = 5^{2} \)
Index: \(80\)\(\medspace = 2^{4} \cdot 5 \)
Exponent: \(25\)\(\medspace = 5^{2} \)
Generators: $c^{2}d^{2}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group) and a $p$-group.

Ambient group ($G$) information

Description: $C_{10}^2.D_{10}$
Order: \(2000\)\(\medspace = 2^{4} \cdot 5^{3} \)
Exponent: \(50\)\(\medspace = 2 \cdot 5^{2} \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), and metabelian.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$D_{25}.C_{10}\times C_2^3.\PSL(2,7)$
$\operatorname{Aut}(H)$ $C_{20}$, of order \(20\)\(\medspace = 2^{2} \cdot 5 \)
$\operatorname{res}(S)$$C_5$, of order \(5\)
$\card{\operatorname{ker}(\operatorname{res})}$\(33600\)\(\medspace = 2^{6} \cdot 3 \cdot 5^{2} \cdot 7 \)
$W$$C_5$, of order \(5\)

Related subgroups

Centralizer:$C_2^2\times C_{50}$
Normalizer:$C_{10}.C_{10}^2$
Normal closure:$C_{25}:C_5$
Core:$C_5$
Minimal over-subgroups:$C_{25}:C_5$$C_{50}$
Maximal under-subgroups:$C_5$

Other information

Number of subgroups in this autjugacy class$4$
Number of conjugacy classes in this autjugacy class$2$
Möbius function$0$
Projective image$C_{10}^2.D_{10}$