Subgroup ($H$) information
| Description: | $C_{25}$ |
| Order: | \(25\)\(\medspace = 5^{2} \) |
| Index: | \(80\)\(\medspace = 2^{4} \cdot 5 \) |
| Exponent: | \(25\)\(\medspace = 5^{2} \) |
| Generators: |
$c^{2}d^{2}$
|
| Nilpotency class: | $1$ |
| Derived length: | $1$ |
The subgroup is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group) and a $p$-group.
Ambient group ($G$) information
| Description: | $C_{10}^2.D_{10}$ |
| Order: | \(2000\)\(\medspace = 2^{4} \cdot 5^{3} \) |
| Exponent: | \(50\)\(\medspace = 2 \cdot 5^{2} \) |
| Derived length: | $2$ |
The ambient group is nonabelian, supersolvable (hence solvable and monomial), and metabelian.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $D_{25}.C_{10}\times C_2^3.\PSL(2,7)$ |
| $\operatorname{Aut}(H)$ | $C_{20}$, of order \(20\)\(\medspace = 2^{2} \cdot 5 \) |
| $\operatorname{res}(S)$ | $C_5$, of order \(5\) |
| $\card{\operatorname{ker}(\operatorname{res})}$ | \(33600\)\(\medspace = 2^{6} \cdot 3 \cdot 5^{2} \cdot 7 \) |
| $W$ | $C_5$, of order \(5\) |
Related subgroups
| Centralizer: | $C_2^2\times C_{50}$ | |
| Normalizer: | $C_{10}.C_{10}^2$ | |
| Normal closure: | $C_{25}:C_5$ | |
| Core: | $C_5$ | |
| Minimal over-subgroups: | $C_{25}:C_5$ | $C_{50}$ |
| Maximal under-subgroups: | $C_5$ |
Other information
| Number of subgroups in this autjugacy class | $4$ |
| Number of conjugacy classes in this autjugacy class | $2$ |
| Möbius function | $0$ |
| Projective image | $C_{10}^2.D_{10}$ |