Properties

Label 2000.505.20.c1
Order $ 2^{2} \cdot 5^{2} $
Index $ 2^{2} \cdot 5 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2\times C_{50}$
Order: \(100\)\(\medspace = 2^{2} \cdot 5^{2} \)
Index: \(20\)\(\medspace = 2^{2} \cdot 5 \)
Exponent: \(50\)\(\medspace = 2 \cdot 5^{2} \)
Generators: $a, d^{2}, d^{10}, d^{25}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is normal, a semidirect factor, abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), elementary for $p = 2$ (hence hyperelementary), and metacyclic.

Ambient group ($G$) information

Description: $C_{10}^2.D_{10}$
Order: \(2000\)\(\medspace = 2^{4} \cdot 5^{3} \)
Exponent: \(50\)\(\medspace = 2 \cdot 5^{2} \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), and metabelian.

Quotient group ($Q$) structure

Description: $C_2\times C_{10}$
Order: \(20\)\(\medspace = 2^{2} \cdot 5 \)
Exponent: \(10\)\(\medspace = 2 \cdot 5 \)
Automorphism Group: $C_4\times S_3$, of order \(24\)\(\medspace = 2^{3} \cdot 3 \)
Outer Automorphisms: $C_4\times S_3$, of order \(24\)\(\medspace = 2^{3} \cdot 3 \)
Nilpotency class: $1$
Derived length: $1$

The quotient is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), elementary for $p = 2$ (hence hyperelementary), and metacyclic.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$D_{25}.C_{10}\times C_2^3.\PSL(2,7)$
$\operatorname{Aut}(H)$ $S_3\times C_{20}$, of order \(120\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \)
$\operatorname{res}(S)$$S_3\times C_{20}$, of order \(120\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(800\)\(\medspace = 2^{5} \cdot 5^{2} \)
$W$$C_{10}$, of order \(10\)\(\medspace = 2 \cdot 5 \)

Related subgroups

Centralizer:$C_2^2\times C_{50}$
Normalizer:$C_{10}^2.D_{10}$
Complements:$C_2\times C_{10}$
Minimal over-subgroups:$C_{50}:C_{10}$$C_2\times D_{50}$$C_2^2\times C_{50}$
Maximal under-subgroups:$C_{50}$$C_2\times C_{10}$

Other information

Number of subgroups in this autjugacy class$7$
Number of conjugacy classes in this autjugacy class$7$
Möbius function$-2$
Projective image$C_{50}:C_{10}$