Properties

Label 2000.505.100.a1
Order $ 2^{2} \cdot 5 $
Index $ 2^{2} \cdot 5^{2} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2\times C_{10}$
Order: \(20\)\(\medspace = 2^{2} \cdot 5 \)
Index: \(100\)\(\medspace = 2^{2} \cdot 5^{2} \)
Exponent: \(10\)\(\medspace = 2 \cdot 5 \)
Generators: $a, d^{10}, d^{25}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is normal, abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), elementary for $p = 2$ (hence hyperelementary), and metacyclic.

Ambient group ($G$) information

Description: $C_{10}^2.D_{10}$
Order: \(2000\)\(\medspace = 2^{4} \cdot 5^{3} \)
Exponent: \(50\)\(\medspace = 2 \cdot 5^{2} \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), and metabelian.

Quotient group ($Q$) structure

Description: $C_5\times D_{10}$
Order: \(100\)\(\medspace = 2^{2} \cdot 5^{2} \)
Exponent: \(10\)\(\medspace = 2 \cdot 5 \)
Automorphism Group: $C_{10}:C_4^2$, of order \(160\)\(\medspace = 2^{5} \cdot 5 \)
Outer Automorphisms: $C_2^2\times C_4$, of order \(16\)\(\medspace = 2^{4} \)
Nilpotency class: $-1$
Derived length: $2$

The quotient is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and an A-group.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$D_{25}.C_{10}\times C_2^3.\PSL(2,7)$
$\operatorname{Aut}(H)$ $C_4\times S_3$, of order \(24\)\(\medspace = 2^{3} \cdot 3 \)
$\operatorname{res}(S)$$C_4\times S_3$, of order \(24\)\(\medspace = 2^{3} \cdot 3 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(4000\)\(\medspace = 2^{5} \cdot 5^{3} \)
$W$$C_2$, of order \(2\)

Related subgroups

Centralizer:$C_{10}.C_{10}^2$
Normalizer:$C_{10}^2.D_{10}$
Minimal over-subgroups:$C_{10}^2$$C_2\times C_{50}$$C_2\times C_{50}$$C_2^2\times C_{10}$$C_2\times D_{10}$
Maximal under-subgroups:$C_{10}$$C_2^2$

Other information

Number of subgroups in this autjugacy class$7$
Number of conjugacy classes in this autjugacy class$7$
Möbius function$10$
Projective image$C_{50}:C_{10}$