Properties

Label 1984.389.8.c1.a1
Order $ 2^{3} \cdot 31 $
Index $ 2^{3} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{31}:Q_8$
Order: \(248\)\(\medspace = 2^{3} \cdot 31 \)
Index: \(8\)\(\medspace = 2^{3} \)
Exponent: \(124\)\(\medspace = 2^{2} \cdot 31 \)
Generators: $a, b^{24}, c, b^{16}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and hyperelementary for $p = 2$.

Ambient group ($G$) information

Description: $C_{31}:Q_{64}$
Order: \(1984\)\(\medspace = 2^{6} \cdot 31 \)
Exponent: \(992\)\(\medspace = 2^{5} \cdot 31 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{248}.C_{60}.C_2^4$
$\operatorname{Aut}(H)$ $D_4\times F_{31}$, of order \(7440\)\(\medspace = 2^{4} \cdot 3 \cdot 5 \cdot 31 \)
$\operatorname{res}(S)$$D_4\times F_{31}$, of order \(7440\)\(\medspace = 2^{4} \cdot 3 \cdot 5 \cdot 31 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(8\)\(\medspace = 2^{3} \)
$W$$D_{124}$, of order \(248\)\(\medspace = 2^{3} \cdot 31 \)

Related subgroups

Centralizer:$C_2$
Normalizer:$C_{31}:Q_{16}$
Normal closure:$C_{31}:Q_{32}$
Core:$C_{124}$
Minimal over-subgroups:$C_{31}:Q_{16}$
Maximal under-subgroups:$C_{124}$$C_{31}:C_4$$Q_8$

Other information

Number of subgroups in this conjugacy class$4$
Möbius function$0$
Projective image$C_{31}:D_{16}$