Properties

Label 1984.389.2.b1.a1
Order $ 2^{5} \cdot 31 $
Index $ 2 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{31}:Q_{32}$
Order: \(992\)\(\medspace = 2^{5} \cdot 31 \)
Index: \(2\)
Exponent: \(496\)\(\medspace = 2^{4} \cdot 31 \)
Generators: $b^{24}, b^{16}, c, b^{4}, b^{30}, a$ Copy content Toggle raw display
Derived length: $2$

The subgroup is characteristic (hence normal), maximal, nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and hyperelementary for $p = 2$.

Ambient group ($G$) information

Description: $C_{31}:Q_{64}$
Order: \(1984\)\(\medspace = 2^{6} \cdot 31 \)
Exponent: \(992\)\(\medspace = 2^{5} \cdot 31 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Quotient group ($Q$) structure

Description: $C_2$
Order: \(2\)
Exponent: \(2\)
Automorphism Group: $C_1$, of order $1$
Outer Automorphisms: $C_1$, of order $1$
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, simple, and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{248}.C_{60}.C_2^4$
$\operatorname{Aut}(H)$ $C_{248}.C_{30}.C_2^4$
$\card{\operatorname{res}(\operatorname{Aut}(G))}$\(119040\)\(\medspace = 2^{8} \cdot 3 \cdot 5 \cdot 31 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(2\)
$W$$C_{31}:D_{16}$, of order \(992\)\(\medspace = 2^{5} \cdot 31 \)

Related subgroups

Centralizer:$C_2$
Normalizer:$C_{31}:Q_{64}$
Minimal over-subgroups:$C_{31}:Q_{64}$
Maximal under-subgroups:$C_{496}$$C_{31}:Q_{16}$$Q_{32}$

Other information

Möbius function$-1$
Projective image$C_{31}:D_{16}$