Subgroup ($H$) information
Description: | $C_{32}$ |
Order: | \(32\)\(\medspace = 2^{5} \) |
Index: | \(62\)\(\medspace = 2 \cdot 31 \) |
Exponent: | \(32\)\(\medspace = 2^{5} \) |
Generators: |
$b$
|
Nilpotency class: | $1$ |
Derived length: | $1$ |
The subgroup is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group) and a $p$-group.
Ambient group ($G$) information
Description: | $C_{31}:Q_{64}$ |
Order: | \(1984\)\(\medspace = 2^{6} \cdot 31 \) |
Exponent: | \(992\)\(\medspace = 2^{5} \cdot 31 \) |
Derived length: | $2$ |
The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
$\operatorname{Aut}(G)$ | $C_{248}.C_{60}.C_2^4$ |
$\operatorname{Aut}(H)$ | $C_2\times C_8$, of order \(16\)\(\medspace = 2^{4} \) |
$\operatorname{res}(S)$ | $C_2\times C_8$, of order \(16\)\(\medspace = 2^{4} \) |
$\card{\operatorname{ker}(\operatorname{res})}$ | \(480\)\(\medspace = 2^{5} \cdot 3 \cdot 5 \) |
$W$ | $C_2$, of order \(2\) |
Related subgroups
Centralizer: | $C_{32}$ | |
Normalizer: | $Q_{64}$ | |
Normal closure: | $C_{31}:C_{32}$ | |
Core: | $C_{16}$ | |
Minimal over-subgroups: | $C_{31}:C_{32}$ | $Q_{64}$ |
Maximal under-subgroups: | $C_{16}$ |
Other information
Number of subgroups in this conjugacy class | $31$ |
Möbius function | $1$ |
Projective image | $C_{31}:D_{16}$ |