Properties

Label 1980.42.3.a1.a1
Order $ 2^{2} \cdot 3 \cdot 5 \cdot 11 $
Index $ 3 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{33}:C_{20}$
Order: \(660\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \cdot 11 \)
Index: \(3\)
Exponent: \(660\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \cdot 11 \)
Generators: $a^{5}, a^{10}, c^{22}, a^{4}, c^{3}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is maximal, nonabelian, and a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group).

Ambient group ($G$) information

Description: $(C_3\times C_{33}):C_{20}$
Order: \(1980\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 5 \cdot 11 \)
Exponent: \(660\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \cdot 11 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), metabelian, and an A-group.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$\PSU(3,2).C_{33}.C_5.C_2^3$
$\operatorname{Aut}(H)$ $D_6\times F_{11}$, of order \(1320\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \cdot 11 \)
$\operatorname{res}(S)$$D_6\times F_{11}$, of order \(1320\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \cdot 11 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(6\)\(\medspace = 2 \cdot 3 \)
$W$$C_{33}:C_{10}$, of order \(330\)\(\medspace = 2 \cdot 3 \cdot 5 \cdot 11 \)

Related subgroups

Centralizer:$C_2$
Normalizer:$C_{33}:C_{20}$
Normal closure:$(C_3\times C_{33}):C_{20}$
Core:$C_{11}:C_{30}$
Minimal over-subgroups:$(C_3\times C_{33}):C_{20}$
Maximal under-subgroups:$C_{11}:C_{30}$$C_{11}:C_{20}$$C_3:C_{44}$$C_3:C_{20}$
Autjugate subgroups:1980.42.3.a1.b11980.42.3.a1.c11980.42.3.a1.d1

Other information

Number of subgroups in this conjugacy class$3$
Möbius function$-1$
Projective image$(C_3\times C_{33}):C_{10}$