Properties

Label 19440.bb.90.n1.a1
Order $ 2^{3} \cdot 3^{3} $
Index $ 2 \cdot 3^{2} \cdot 5 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$D_4\times \He_3$
Order: \(216\)\(\medspace = 2^{3} \cdot 3^{3} \)
Index: \(90\)\(\medspace = 2 \cdot 3^{2} \cdot 5 \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Generators: $\langle(7,8,9)(10,12,11), (2,4)(5,6)(10,12,11)(13,14,15), (7,12,14)(8,10,15)(9,11,13) \!\cdots\! \rangle$ Copy content Toggle raw display
Nilpotency class: $2$
Derived length: $2$

The subgroup is nonabelian, nilpotent (hence solvable, supersolvable, and monomial), and metabelian.

Ambient group ($G$) information

Description: $C_3^2:C_6\times A_6$
Order: \(19440\)\(\medspace = 2^{4} \cdot 3^{5} \cdot 5 \)
Exponent: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Derived length:$2$

The ambient group is nonabelian and nonsolvable.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_3.S_3^2.A_6.C_2^2$
$\operatorname{Aut}(H)$ $C_2^4.\SL(3,3)$, of order \(3456\)\(\medspace = 2^{7} \cdot 3^{3} \)
$W$$C_6\times D_6$, of order \(72\)\(\medspace = 2^{3} \cdot 3^{2} \)

Related subgroups

Centralizer:$C_6$
Normalizer:$C_6^2:D_6$
Normal closure:$\He_3\times A_6$
Core:$\He_3$
Minimal over-subgroups:$S_4\times \He_3$$S_4\times \He_3$$C_6^2:D_6$
Maximal under-subgroups:$C_4\times \He_3$$C_2^2\times \He_3$$C_2^2\times \He_3$$D_4\times C_3^2$$D_4\times C_3^2$$D_4\times C_3^2$

Other information

Number of subgroups in this conjugacy class$45$
Möbius function$-1$
Projective image$C_3^2:C_6\times A_6$