Properties

Label 19440.bb.180.h1.a1
Order $ 2^{2} \cdot 3^{3} $
Index $ 2^{2} \cdot 3^{2} \cdot 5 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_4\times \He_3$
Order: \(108\)\(\medspace = 2^{2} \cdot 3^{3} \)
Index: \(180\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 5 \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Generators: $\langle(7,8,9)(10,12,11), (7,12,14)(8,10,15)(9,11,13), (1,3)(5,6)(7,12,15)(8,10,13) \!\cdots\! \rangle$ Copy content Toggle raw display
Nilpotency class: $2$
Derived length: $2$

The subgroup is nonabelian, elementary for $p = 3$ (hence nilpotent, solvable, supersolvable, monomial, and hyperelementary), and metabelian.

Ambient group ($G$) information

Description: $C_3^2:C_6\times A_6$
Order: \(19440\)\(\medspace = 2^{4} \cdot 3^{5} \cdot 5 \)
Exponent: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Derived length:$2$

The ambient group is nonabelian and nonsolvable.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_3.S_3^2.A_6.C_2^2$
$\operatorname{Aut}(H)$ $C_2\times C_3^2:\GL(2,3)$, of order \(864\)\(\medspace = 2^{5} \cdot 3^{3} \)
$W$$C_6\times S_3$, of order \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)

Related subgroups

Centralizer:$C_{12}$
Normalizer:$C_6^2:D_6$
Normal closure:$\He_3\times A_6$
Core:$\He_3$
Minimal over-subgroups:$C_3^4:C_{12}$$C_4\times C_3^2:C_6$$C_3^2:D_{12}$$D_4\times \He_3$
Maximal under-subgroups:$C_2\times \He_3$$C_3\times C_{12}$$C_3\times C_{12}$$C_3\times C_{12}$

Other information

Number of subgroups in this conjugacy class$45$
Möbius function$-2$
Projective image$C_3^2:C_6\times A_6$