Subgroup ($H$) information
| Description: | $C_3$ |
| Order: | \(3\) |
| Index: | \(648\)\(\medspace = 2^{3} \cdot 3^{4} \) |
| Exponent: | \(3\) |
| Generators: |
$\langle(1,6,3)(2,9,5)(4,7,8)\rangle$
|
| Nilpotency class: | $1$ |
| Derived length: | $1$ |
The subgroup is the Frattini subgroup (hence characteristic and normal), cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, and simple.
Ambient group ($G$) information
| Description: | $C_2\times C_3^3:S_3^2$ |
| Order: | \(1944\)\(\medspace = 2^{3} \cdot 3^{5} \) |
| Exponent: | \(6\)\(\medspace = 2 \cdot 3 \) |
| Derived length: | $3$ |
The ambient group is nonabelian and supersolvable (hence solvable and monomial).
Quotient group ($Q$) structure
| Description: | $C_3^4:C_2^3$ |
| Order: | \(648\)\(\medspace = 2^{3} \cdot 3^{4} \) |
| Exponent: | \(6\)\(\medspace = 2 \cdot 3 \) |
| Automorphism Group: | $(C_3^2\times C_6^2).\GL(2,3)\wr C_2$, of order \(1492992\)\(\medspace = 2^{11} \cdot 3^{6} \) |
| Outer Automorphisms: | $S_4^2:D_4$, of order \(4608\)\(\medspace = 2^{9} \cdot 3^{2} \) |
| Nilpotency class: | $-1$ |
| Derived length: | $2$ |
The quotient is nonabelian, supersolvable (hence solvable and monomial), metabelian, an A-group, and rational.
Automorphism information
Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $C_3^5.C_3^2.C_2^6.C_2$ |
| $\operatorname{Aut}(H)$ | $C_2$, of order \(2\) |
| $\operatorname{res}(\operatorname{Aut}(G))$ | $C_2$, of order \(2\) |
| $\card{\operatorname{ker}(\operatorname{res})}$ | \(139968\)\(\medspace = 2^{6} \cdot 3^{7} \) |
| $W$ | $C_2$, of order \(2\) |
Related subgroups
| Centralizer: | $C_3^4:D_6$ | |||||||
| Normalizer: | $C_2\times C_3^3:S_3^2$ | |||||||
| Minimal over-subgroups: | $C_3^2$ | $C_3^2$ | $C_3^2$ | $C_3^2$ | $C_3^2$ | $C_6$ | $S_3$ | $C_6$ |
| Maximal under-subgroups: | $C_1$ |
Other information
| Number of conjugacy classes in this autjugacy class | $1$ |
| Möbius function | $-5832$ |
| Projective image | $C_2\times C_3^3:S_3^2$ |