Properties

Label 1944.3720.2.b1
Order $ 2^{2} \cdot 3^{5} $
Index $ 2 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_3^4:D_6$
Order: \(972\)\(\medspace = 2^{2} \cdot 3^{5} \)
Index: \(2\)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Generators: $\langle(10,12,11), (2,9,5)(4,8,7), (15,17,16), (1,4,2)(3,8,5)(6,7,9)(15,16,17), (13,14), (1,6,3)(2,9,5)(4,7,8), (2,4)(5,8)(7,9)(11,12)(13,14)(16,17)\rangle$ Copy content Toggle raw display
Derived length: $3$

The subgroup is characteristic (hence normal), maximal, a semidirect factor, nonabelian, and supersolvable (hence solvable and monomial).

Ambient group ($G$) information

Description: $C_2\times C_3^3:S_3^2$
Order: \(1944\)\(\medspace = 2^{3} \cdot 3^{5} \)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Derived length:$3$

The ambient group is nonabelian and supersolvable (hence solvable and monomial).

Quotient group ($Q$) structure

Description: $C_2$
Order: \(2\)
Exponent: \(2\)
Automorphism Group: $C_1$, of order $1$
Outer Automorphisms: $C_1$, of order $1$
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, simple, and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_3^5.C_3^2.C_2^6.C_2$
$\operatorname{Aut}(H)$ $C_3^4.C_3^4.Q_8^2.S_3^2.C_2$
$\operatorname{res}(\operatorname{Aut}(G))$$C_3^4:D_6^2:C_2^2$, of order \(46656\)\(\medspace = 2^{6} \cdot 3^{6} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(6\)\(\medspace = 2 \cdot 3 \)
$W$$C_3^2:S_3^2$, of order \(324\)\(\medspace = 2^{2} \cdot 3^{4} \)

Related subgroups

Centralizer:$C_6$
Normalizer:$C_2\times C_3^3:S_3^2$
Complements:$C_2$
Minimal over-subgroups:$C_2\times C_3^3:S_3^2$
Maximal under-subgroups:$C_3^4:C_6$$C_3^4:S_3$$C_3^3:D_6$$C_3^3:D_6$$C_3^3:D_6$$C_3^3:D_6$$C_3^3:D_6$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function$-1$
Projective image$C_3^3:S_3^2$