Subgroup ($H$) information
| Description: | $C_3^4:D_6$ |
| Order: | \(972\)\(\medspace = 2^{2} \cdot 3^{5} \) |
| Index: | \(2\) |
| Exponent: | \(6\)\(\medspace = 2 \cdot 3 \) |
| Generators: |
$\langle(10,12,11), (2,9,5)(4,8,7), (15,17,16), (1,4,2)(3,8,5)(6,7,9)(15,16,17), (13,14), (1,6,3)(2,9,5)(4,7,8), (2,4)(5,8)(7,9)(11,12)(13,14)(16,17)\rangle$
|
| Derived length: | $3$ |
The subgroup is characteristic (hence normal), maximal, a semidirect factor, nonabelian, and supersolvable (hence solvable and monomial).
Ambient group ($G$) information
| Description: | $C_2\times C_3^3:S_3^2$ |
| Order: | \(1944\)\(\medspace = 2^{3} \cdot 3^{5} \) |
| Exponent: | \(6\)\(\medspace = 2 \cdot 3 \) |
| Derived length: | $3$ |
The ambient group is nonabelian and supersolvable (hence solvable and monomial).
Quotient group ($Q$) structure
| Description: | $C_2$ |
| Order: | \(2\) |
| Exponent: | \(2\) |
| Automorphism Group: | $C_1$, of order $1$ |
| Outer Automorphisms: | $C_1$, of order $1$ |
| Derived length: | $1$ |
The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, simple, and rational.
Automorphism information
Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $C_3^5.C_3^2.C_2^6.C_2$ |
| $\operatorname{Aut}(H)$ | $C_3^4.C_3^4.Q_8^2.S_3^2.C_2$ |
| $\operatorname{res}(\operatorname{Aut}(G))$ | $C_3^4:D_6^2:C_2^2$, of order \(46656\)\(\medspace = 2^{6} \cdot 3^{6} \) |
| $\card{\operatorname{ker}(\operatorname{res})}$ | \(6\)\(\medspace = 2 \cdot 3 \) |
| $W$ | $C_3^2:S_3^2$, of order \(324\)\(\medspace = 2^{2} \cdot 3^{4} \) |
Related subgroups
Other information
| Number of conjugacy classes in this autjugacy class | $1$ |
| Möbius function | $-1$ |
| Projective image | $C_3^3:S_3^2$ |