Properties

Label 1944.3719.9.a1
Order $ 2^{3} \cdot 3^{3} $
Index $ 3^{2} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_6:D_{18}$
Order: \(216\)\(\medspace = 2^{3} \cdot 3^{3} \)
Index: \(9\)\(\medspace = 3^{2} \)
Exponent: \(18\)\(\medspace = 2 \cdot 3^{2} \)
Generators: $a, e^{3}, e^{4}, c^{3}, d^{3}, d^{2}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, supersolvable (hence solvable and monomial), metabelian, and an A-group.

Ambient group ($G$) information

Description: $C_2\times C_3^3:D_{18}$
Order: \(1944\)\(\medspace = 2^{3} \cdot 3^{5} \)
Exponent: \(18\)\(\medspace = 2 \cdot 3^{2} \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), metabelian, and an A-group.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_3^2.(C_3^3\times Q_8).C_3^4.C_2^5$
$\operatorname{Aut}(H)$ $S_4\times C_3^4.S_3^2$, of order \(69984\)\(\medspace = 2^{5} \cdot 3^{7} \)
$\operatorname{res}(S)$$C_3^4.D_6^2$, of order \(11664\)\(\medspace = 2^{4} \cdot 3^{6} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(48\)\(\medspace = 2^{4} \cdot 3 \)
$W$$C_3:D_9$, of order \(54\)\(\medspace = 2 \cdot 3^{3} \)

Related subgroups

Centralizer:$C_2^2$
Normalizer:$C_6:D_{18}$
Normal closure:$C_2\times C_3^3:D_{18}$
Core:$C_3:D_{18}$
Minimal over-subgroups:$C_{18}:S_3^2$
Maximal under-subgroups:$C_3:D_{18}$$C_6\times C_{18}$$C_3:D_{18}$$C_3:D_{18}$$C_6:D_6$$C_2\times D_{18}$

Other information

Number of subgroups in this autjugacy class$9$
Number of conjugacy classes in this autjugacy class$1$
Möbius function$3$
Projective image$C_3^3:D_{18}$