Subgroup ($H$) information
| Description: | $C_3^3:S_4$ |
| Order: | \(648\)\(\medspace = 2^{3} \cdot 3^{4} \) |
| Index: | \(3\) |
| Exponent: | \(12\)\(\medspace = 2^{2} \cdot 3 \) |
| Generators: |
$a^{3}, d^{3}e^{3}, e^{2}, a^{2}, e^{3}, bc^{2}, d^{2}$
|
| Derived length: | $3$ |
The subgroup is maximal, nonabelian, and monomial (hence solvable).
Ambient group ($G$) information
| Description: | $C_3^3:(C_3\times S_4)$ |
| Order: | \(1944\)\(\medspace = 2^{3} \cdot 3^{5} \) |
| Exponent: | \(12\)\(\medspace = 2^{2} \cdot 3 \) |
| Derived length: | $3$ |
The ambient group is nonabelian and monomial (hence solvable).
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $C_3^4.C_6^2.S_3^3.C_2$ |
| $\operatorname{Aut}(H)$ | $(C_3\times C_6^2).S_3^3$ |
| $\card{\operatorname{res}(S)}$ | \(23328\)\(\medspace = 2^{5} \cdot 3^{6} \) |
| $\card{\operatorname{ker}(\operatorname{res})}$ | \(9\)\(\medspace = 3^{2} \) |
| $W$ | $C_3^3:S_4$, of order \(648\)\(\medspace = 2^{3} \cdot 3^{4} \) |
Related subgroups
Other information
| Number of subgroups in this autjugacy class | $6$ |
| Number of conjugacy classes in this autjugacy class | $2$ |
| Möbius function | $-1$ |
| Projective image | $C_3^3:(C_3\times S_4)$ |