Properties

Label 1944.3612.3.d1
Order $ 2^{3} \cdot 3^{4} $
Index $ 3 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_3^3:S_4$
Order: \(648\)\(\medspace = 2^{3} \cdot 3^{4} \)
Index: \(3\)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Generators: $a^{3}, d^{3}e^{3}, e^{2}, a^{2}, e^{3}, bc^{2}, d^{2}$ Copy content Toggle raw display
Derived length: $3$

The subgroup is maximal, nonabelian, and monomial (hence solvable).

Ambient group ($G$) information

Description: $C_3^3:(C_3\times S_4)$
Order: \(1944\)\(\medspace = 2^{3} \cdot 3^{5} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Derived length:$3$

The ambient group is nonabelian and monomial (hence solvable).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_3^4.C_6^2.S_3^3.C_2$
$\operatorname{Aut}(H)$ $(C_3\times C_6^2).S_3^3$
$\card{\operatorname{res}(S)}$\(23328\)\(\medspace = 2^{5} \cdot 3^{6} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(9\)\(\medspace = 3^{2} \)
$W$$C_3^3:S_4$, of order \(648\)\(\medspace = 2^{3} \cdot 3^{4} \)

Related subgroups

Centralizer:$C_1$
Normalizer:$C_3^3:S_4$
Normal closure:$C_3^3:(C_3\times S_4)$
Core:$C_3^3:A_4$
Minimal over-subgroups:$C_3^3:(C_3\times S_4)$
Maximal under-subgroups:$C_3^3:A_4$$C_6^2:C_6$$C_3^2:S_4$$C_3^2:S_4$$C_3^3:C_6$

Other information

Number of subgroups in this autjugacy class$6$
Number of conjugacy classes in this autjugacy class$2$
Möbius function$-1$
Projective image$C_3^3:(C_3\times S_4)$