Subgroup ($H$) information
| Description: | $C_3\times \He_3:D_{12}$ |
| Order: | \(1944\)\(\medspace = 2^{3} \cdot 3^{5} \) |
| Index: | $1$ |
| Exponent: | \(12\)\(\medspace = 2^{2} \cdot 3 \) |
| Generators: |
$\left(\begin{array}{rr}
19 & 81 \\
0 & 1
\end{array}\right), \left(\begin{array}{rr}
19 & 0 \\
0 & 19
\end{array}\right), \left(\begin{array}{rr}
46 & 45 \\
45 & 1
\end{array}\right), \left(\begin{array}{rr}
83 & 10 \\
6 & 7
\end{array}\right), \left(\begin{array}{rr}
61 & 0 \\
0 & 61
\end{array}\right), \left(\begin{array}{rr}
1 & 60 \\
0 & 1
\end{array}\right), \left(\begin{array}{rr}
1 & 70 \\
60 & 61
\end{array}\right), \left(\begin{array}{rr}
31 & 30 \\
0 & 1
\end{array}\right)$
|
| Derived length: | $2$ |
The subgroup is the radical (hence characteristic, normal, and solvable), a direct factor, nonabelian, a Hall subgroup, supersolvable (hence monomial), and metabelian.
Ambient group ($G$) information
| Description: | $C_3\times \He_3:D_{12}$ |
| Order: | \(1944\)\(\medspace = 2^{3} \cdot 3^{5} \) |
| Exponent: | \(12\)\(\medspace = 2^{2} \cdot 3 \) |
| Derived length: | $2$ |
The ambient group is nonabelian, supersolvable (hence solvable and monomial), and metabelian.
Quotient group ($Q$) structure
| Description: | $C_1$ |
| Order: | $1$ |
| Exponent: | $1$ |
| Automorphism Group: | $C_1$, of order $1$ |
| Outer Automorphisms: | $C_1$, of order $1$ |
| Derived length: | $0$ |
The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary (for every $p$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group (for every $p$), perfect, and rational.
Automorphism information
Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $C_3^3.D_6^2.C_2^2$ |
| $\operatorname{Aut}(H)$ | $C_3^3.D_6^2.C_2^2$ |
| $W$ | $C_3^2:S_3^2$, of order \(324\)\(\medspace = 2^{2} \cdot 3^{4} \) |
Related subgroups
Other information
| Möbius function | $1$ |
| Projective image | $C_3^2:S_3^2$ |