Properties

Label 1944.2732.3.a1
Order $ 2^{3} \cdot 3^{4} $
Index $ 3 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$D_9\times D_{18}$
Order: \(648\)\(\medspace = 2^{3} \cdot 3^{4} \)
Index: \(3\)
Exponent: \(18\)\(\medspace = 2 \cdot 3^{2} \)
Generators: $a, c^{3}, d^{2}, b^{3}, d^{6}, d^{9}, c$ Copy content Toggle raw display
Derived length: $2$

The subgroup is maximal, nonabelian, supersolvable (hence solvable and monomial), metabelian, and an A-group.

Ambient group ($G$) information

Description: $C_2\times C_9^2:D_6$
Order: \(1944\)\(\medspace = 2^{3} \cdot 3^{5} \)
Exponent: \(18\)\(\medspace = 2 \cdot 3^{2} \)
Derived length:$3$

The ambient group is nonabelian and supersolvable (hence solvable and monomial).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_9^2.C_6^2.C_6.C_2^2$
$\operatorname{Aut}(H)$ $C_9^2.C_6^2.C_2^3$, of order \(23328\)\(\medspace = 2^{5} \cdot 3^{6} \)
$\operatorname{res}(S)$$C_9^2.C_6^2.C_2^3$, of order \(23328\)\(\medspace = 2^{5} \cdot 3^{6} \)
$\card{\operatorname{ker}(\operatorname{res})}$$1$
$W$$D_9^2$, of order \(324\)\(\medspace = 2^{2} \cdot 3^{4} \)

Related subgroups

Centralizer:$C_2$
Normalizer:$D_9\times D_{18}$
Normal closure:$C_2\times C_9^2:D_6$
Core:$C_9:D_{18}$
Minimal over-subgroups:$C_2\times C_9^2:D_6$
Maximal under-subgroups:$C_9:D_{18}$$C_9\times D_{18}$$D_9^2$$S_3\times D_{18}$

Other information

Number of subgroups in this autjugacy class$3$
Number of conjugacy classes in this autjugacy class$1$
Möbius function$-1$
Projective image$C_9^2:D_6$