Properties

Label 1944.2708.12.k1
Order $ 2 \cdot 3^{4} $
Index $ 2^{2} \cdot 3 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_3^2:C_{18}$
Order: \(162\)\(\medspace = 2 \cdot 3^{4} \)
Index: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Exponent: \(18\)\(\medspace = 2 \cdot 3^{2} \)
Generators: $d^{3}, e^{3}, b^{2}cd^{2}, cd^{2}e, d^{2}$ Copy content Toggle raw display
Nilpotency class: $2$
Derived length: $2$

The subgroup is nonabelian, elementary for $p = 3$ (hence nilpotent, solvable, supersolvable, monomial, and hyperelementary), and metabelian.

Ambient group ($G$) information

Description: $C_2\times \He_3:D_{18}$
Order: \(1944\)\(\medspace = 2^{3} \cdot 3^{5} \)
Exponent: \(18\)\(\medspace = 2 \cdot 3^{2} \)
Derived length:$3$

The ambient group is nonabelian and supersolvable (hence solvable and monomial).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_3^3.C_3^4.C_2^5$
$\operatorname{Aut}(H)$ $C_3^3:S_3^2$, of order \(972\)\(\medspace = 2^{2} \cdot 3^{5} \)
$\operatorname{res}(S)$$C_3^2\wr C_2$, of order \(162\)\(\medspace = 2 \cdot 3^{4} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(108\)\(\medspace = 2^{2} \cdot 3^{3} \)
$W$$C_3:S_3$, of order \(18\)\(\medspace = 2 \cdot 3^{2} \)

Related subgroups

Centralizer:$C_3\times C_{18}$
Normalizer:$\He_3:D_{18}$
Normal closure:$C_{18}\times \He_3$
Core:$C_3\times C_{18}$
Minimal over-subgroups:$C_{18}\times \He_3$$C_3^2:D_{18}$
Maximal under-subgroups:$C_3^2:C_9$$C_3\times C_{18}$$C_3^2\times C_6$$C_3\times C_{18}$$C_3\times C_{18}$

Other information

Number of subgroups in this autjugacy class$4$
Number of conjugacy classes in this autjugacy class$2$
Möbius function$0$
Projective image$\He_3:D_{18}$