Properties

Label 1944.2708.2.b1
Order $ 2^{2} \cdot 3^{5} $
Index $ 2 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$\He_3:D_{18}$
Order: \(972\)\(\medspace = 2^{2} \cdot 3^{5} \)
Index: \(2\)
Exponent: \(18\)\(\medspace = 2 \cdot 3^{2} \)
Generators: $ab^{5}, d^{2}, e^{7}, d^{3}, e^{3}, b^{2}, cd^{4}$ Copy content Toggle raw display
Derived length: $3$

The subgroup is characteristic (hence normal), maximal, a semidirect factor, nonabelian, and supersolvable (hence solvable and monomial).

Ambient group ($G$) information

Description: $C_2\times \He_3:D_{18}$
Order: \(1944\)\(\medspace = 2^{3} \cdot 3^{5} \)
Exponent: \(18\)\(\medspace = 2 \cdot 3^{2} \)
Derived length:$3$

The ambient group is nonabelian and supersolvable (hence solvable and monomial).

Quotient group ($Q$) structure

Description: $C_2$
Order: \(2\)
Exponent: \(2\)
Automorphism Group: $C_1$, of order $1$
Outer Automorphisms: $C_1$, of order $1$
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, simple, and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_3^3.C_3^4.C_2^5$
$\operatorname{Aut}(H)$ $C_2\times C_3^3.\ASL(2,3).(C_6\times S_3)$
$\card{\operatorname{res}(\operatorname{Aut}(G))}$\(11664\)\(\medspace = 2^{4} \cdot 3^{6} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(6\)\(\medspace = 2 \cdot 3 \)
$W$$C_9:S_3^2$, of order \(324\)\(\medspace = 2^{2} \cdot 3^{4} \)

Related subgroups

Centralizer:$C_6$
Normalizer:$C_2\times \He_3:D_{18}$
Complements:$C_2$ $C_2$
Minimal over-subgroups:$C_2\times \He_3:D_{18}$
Maximal under-subgroups:$C_{18}\times \He_3$$\He_3:D_9$$C_3^3:D_6$$C_3^2:D_{18}$$C_3^2:D_{18}$$C_3^2:D_{18}$$C_3^2:D_{18}$$C_3^2:D_{18}$$C_3^2:D_{18}$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function$-1$
Projective image$\He_3:D_{18}$