Subgroup ($H$) information
| Description: | $C_3^3:S_4$ | 
| Order: | \(648\)\(\medspace = 2^{3} \cdot 3^{4} \) | 
| Index: | \(3\) | 
| Exponent: | \(36\)\(\medspace = 2^{2} \cdot 3^{2} \) | 
| Generators: | $\left(\begin{array}{rr}
35 & 31 \\
0 & 1
\end{array}\right), \left(\begin{array}{rr}
1 & 18 \\
18 & 1
\end{array}\right), \left(\begin{array}{rr}
25 & 24 \\
12 & 13
\end{array}\right), \left(\begin{array}{rr}
17 & 13 \\
29 & 18
\end{array}\right), \left(\begin{array}{rr}
19 & 18 \\
0 & 19
\end{array}\right), \left(\begin{array}{rr}
1 & 24 \\
0 & 1
\end{array}\right), \left(\begin{array}{rr}
1 & 12 \\
12 & 1
\end{array}\right)$ | 
| Derived length: | $3$ | 
The subgroup is characteristic (hence normal), maximal, a direct factor, nonabelian, and monomial (hence solvable).
Ambient group ($G$) information
| Description: | $C_3^4:S_4$ | 
| Order: | \(1944\)\(\medspace = 2^{3} \cdot 3^{5} \) | 
| Exponent: | \(36\)\(\medspace = 2^{2} \cdot 3^{2} \) | 
| Derived length: | $3$ | 
The ambient group is nonabelian and monomial (hence solvable).
Quotient group ($Q$) structure
| Description: | $C_3$ | 
| Order: | \(3\) | 
| Exponent: | \(3\) | 
| Automorphism Group: | $C_2$, of order \(2\) | 
| Outer Automorphisms: | $C_2$, of order \(2\) | 
| Derived length: | $1$ | 
The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, and simple.
Automorphism information
Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $C_6^3.S_3^2$, of order \(7776\)\(\medspace = 2^{5} \cdot 3^{5} \) | 
| $\operatorname{Aut}(H)$ | $C_3^3:(C_6\times S_4)$, of order \(3888\)\(\medspace = 2^{4} \cdot 3^{5} \) | 
| $\operatorname{res}(\operatorname{Aut}(G))$ | $C_3^3:(C_6\times S_4)$, of order \(3888\)\(\medspace = 2^{4} \cdot 3^{5} \) | 
| $\card{\operatorname{ker}(\operatorname{res})}$ | \(2\) | 
| $W$ | $C_3^3:S_4$, of order \(648\)\(\medspace = 2^{3} \cdot 3^{4} \) | 
Related subgroups
Other information
| Möbius function | $-1$ | 
| Projective image | $C_3^4:S_4$ | 
