Properties

Label 1944.2485.12.e1.a1
Order $ 2 \cdot 3^{4} $
Index $ 2^{2} \cdot 3 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_3^3:S_3$
Order: \(162\)\(\medspace = 2 \cdot 3^{4} \)
Index: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Exponent: \(18\)\(\medspace = 2 \cdot 3^{2} \)
Generators: $\left(\begin{array}{rr} 35 & 31 \\ 0 & 1 \end{array}\right), \left(\begin{array}{rr} 25 & 24 \\ 12 & 13 \end{array}\right), \left(\begin{array}{rr} 17 & 13 \\ 29 & 18 \end{array}\right), \left(\begin{array}{rr} 1 & 24 \\ 0 & 1 \end{array}\right), \left(\begin{array}{rr} 1 & 12 \\ 12 & 1 \end{array}\right)$ Copy content Toggle raw display
Derived length: $3$

The subgroup is nonabelian and supersolvable (hence solvable and monomial).

Ambient group ($G$) information

Description: $C_3^4:S_4$
Order: \(1944\)\(\medspace = 2^{3} \cdot 3^{5} \)
Exponent: \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Derived length:$3$

The ambient group is nonabelian and monomial (hence solvable).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_6^3.S_3^2$, of order \(7776\)\(\medspace = 2^{5} \cdot 3^{5} \)
$\operatorname{Aut}(H)$ $C_3^3.S_3^2$, of order \(972\)\(\medspace = 2^{2} \cdot 3^{5} \)
$\operatorname{res}(S)$$C_3^3.S_3^2$, of order \(972\)\(\medspace = 2^{2} \cdot 3^{5} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(2\)
$W$$C_3^3:S_3$, of order \(162\)\(\medspace = 2 \cdot 3^{4} \)

Related subgroups

Centralizer:$C_3$
Normalizer:$C_3^4:S_3$
Normal closure:$C_3^3:S_4$
Core:$C_3^3$
Minimal over-subgroups:$C_3^3:S_4$$C_3^4:S_3$
Maximal under-subgroups:$C_3\wr C_3$$C_3^2:C_6$$C_3^2:C_6$$C_9:C_6$$C_9:C_6$

Other information

Number of subgroups in this conjugacy class$4$
Möbius function$1$
Projective image$C_3^4:S_4$