Subgroup ($H$) information
| Description: | $\He_3:A_4$ |
| Order: | \(324\)\(\medspace = 2^{2} \cdot 3^{4} \) |
| Index: | \(6\)\(\medspace = 2 \cdot 3 \) |
| Exponent: | \(18\)\(\medspace = 2 \cdot 3^{2} \) |
| Generators: |
$b, d^{3}, c^{3}, c^{2}, d^{4}e, d^{2}$
|
| Derived length: | $2$ |
The subgroup is the commutator subgroup (hence characteristic and normal), a semidirect factor, nonabelian, monomial (hence solvable), and metabelian.
Ambient group ($G$) information
| Description: | $(C_3\times \He_3):S_4$ |
| Order: | \(1944\)\(\medspace = 2^{3} \cdot 3^{5} \) |
| Exponent: | \(36\)\(\medspace = 2^{2} \cdot 3^{2} \) |
| Derived length: | $3$ |
The ambient group is nonabelian and monomial (hence solvable).
Quotient group ($Q$) structure
| Description: | $C_6$ |
| Order: | \(6\)\(\medspace = 2 \cdot 3 \) |
| Exponent: | \(6\)\(\medspace = 2 \cdot 3 \) |
| Automorphism Group: | $C_2$, of order \(2\) |
| Outer Automorphisms: | $C_2$, of order \(2\) |
| Derived length: | $1$ |
The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 2,3$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group).
Automorphism information
Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $\He_3:A_4.C_6.C_2$ |
| $\operatorname{Aut}(H)$ | $C_3\times C_6^2:S_3^2$, of order \(3888\)\(\medspace = 2^{4} \cdot 3^{5} \) |
| $\operatorname{res}(\operatorname{Aut}(G))$ | $C_6^2.S_3^2$, of order \(1296\)\(\medspace = 2^{4} \cdot 3^{4} \) |
| $\card{\operatorname{ker}(\operatorname{res})}$ | \(3\) |
| $W$ | $C_3^3:S_4$, of order \(648\)\(\medspace = 2^{3} \cdot 3^{4} \) |
Related subgroups
Other information
| Möbius function | $1$ |
| Projective image | $(C_3\times \He_3):S_4$ |