Properties

Label 1944.2462.18.b1.a1
Order $ 2^{2} \cdot 3^{3} $
Index $ 2 \cdot 3^{2} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2^2\times \He_3$
Order: \(108\)\(\medspace = 2^{2} \cdot 3^{3} \)
Index: \(18\)\(\medspace = 2 \cdot 3^{2} \)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Generators: $c^{3}, d^{2}, d^{3}, c^{2}, d^{4}e$ Copy content Toggle raw display
Nilpotency class: $2$
Derived length: $2$

The subgroup is characteristic (hence normal), nonabelian, nilpotent (hence solvable, supersolvable, and monomial), and metabelian.

Ambient group ($G$) information

Description: $(C_3\times \He_3):S_4$
Order: \(1944\)\(\medspace = 2^{3} \cdot 3^{5} \)
Exponent: \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Derived length:$3$

The ambient group is nonabelian and monomial (hence solvable).

Quotient group ($Q$) structure

Description: $C_3\times S_3$
Order: \(18\)\(\medspace = 2 \cdot 3^{2} \)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Automorphism Group: $D_6$, of order \(12\)\(\medspace = 2^{2} \cdot 3 \)
Outer Automorphisms: $C_2$, of order \(2\)
Nilpotency class: $-1$
Derived length: $2$

The quotient is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and an A-group.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$\He_3:A_4.C_6.C_2$
$\operatorname{Aut}(H)$ $S_3\times C_3^2:\GL(2,3)$, of order \(2592\)\(\medspace = 2^{5} \cdot 3^{4} \)
$\operatorname{res}(\operatorname{Aut}(G))$$C_3^2:D_6$, of order \(108\)\(\medspace = 2^{2} \cdot 3^{3} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
$W$$C_3^2:S_3$, of order \(54\)\(\medspace = 2 \cdot 3^{3} \)

Related subgroups

Centralizer:$C_6^2$
Normalizer:$(C_3\times \He_3):S_4$
Minimal over-subgroups:$C_3^2:C_6^2$$\He_3:A_4$$\He_3:A_4$$C_6^2:C_6$
Maximal under-subgroups:$C_2\times \He_3$$C_6^2$$C_6^2$

Other information

Möbius function$-3$
Projective image$(C_3\times \He_3):S_4$