Subgroup ($H$) information
| Description: | $C_3^2\times C_6$ | 
| Order: | \(54\)\(\medspace = 2 \cdot 3^{3} \) | 
| Index: | \(36\)\(\medspace = 2^{2} \cdot 3^{2} \) | 
| Exponent: | \(6\)\(\medspace = 2 \cdot 3 \) | 
| Generators: | $e^{3}, a^{2}c, de^{4}, e^{2}$ | 
| Nilpotency class: | $1$ | 
| Derived length: | $1$ | 
The subgroup is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group) and elementary for $p = 3$ (hence hyperelementary).
Ambient group ($G$) information
| Description: | $C_3^3:C_6\wr C_2$ | 
| Order: | \(1944\)\(\medspace = 2^{3} \cdot 3^{5} \) | 
| Exponent: | \(36\)\(\medspace = 2^{2} \cdot 3^{2} \) | 
| Derived length: | $3$ | 
The ambient group is nonabelian and supersolvable (hence solvable and monomial).
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $C_3^3.D_6^2$, of order \(3888\)\(\medspace = 2^{4} \cdot 3^{5} \) | 
| $\operatorname{Aut}(H)$ | $\GL(3,3)$, of order \(11232\)\(\medspace = 2^{5} \cdot 3^{3} \cdot 13 \) | 
| $\operatorname{res}(S)$ | $C_3\times S_3$, of order \(18\)\(\medspace = 2 \cdot 3^{2} \) | 
| $\card{\operatorname{ker}(\operatorname{res})}$ | \(108\)\(\medspace = 2^{2} \cdot 3^{3} \) | 
| $W$ | $C_3\times S_3$, of order \(18\)\(\medspace = 2 \cdot 3^{2} \) | 
Related subgroups
Other information
| Number of subgroups in this conjugacy class | $2$ | 
| Möbius function | $0$ | 
| Projective image | $C_3^3.S_3^2$ | 
