Properties

Label 19360.h.80.b1.b1
Order $ 2 \cdot 11^{2} $
Index $ 2^{4} \cdot 5 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{11}:D_{11}$
Order: \(242\)\(\medspace = 2 \cdot 11^{2} \)
Index: \(80\)\(\medspace = 2^{4} \cdot 5 \)
Exponent: \(22\)\(\medspace = 2 \cdot 11 \)
Generators: $b^{2}cd^{11}, d^{4}, cd^{20}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is normal, a semidirect factor, nonabelian, supersolvable (hence solvable and monomial), metabelian, and an A-group.

Ambient group ($G$) information

Description: $C_{11}^2:(C_{10}\times \SD_{16})$
Order: \(19360\)\(\medspace = 2^{5} \cdot 5 \cdot 11^{2} \)
Exponent: \(440\)\(\medspace = 2^{3} \cdot 5 \cdot 11 \)
Derived length:$3$

The ambient group is nonabelian and monomial (hence solvable).

Quotient group ($Q$) structure

Description: $C_5\times \SD_{16}$
Order: \(80\)\(\medspace = 2^{4} \cdot 5 \)
Exponent: \(40\)\(\medspace = 2^{3} \cdot 5 \)
Automorphism Group: $C_4^2:C_2^2$, of order \(64\)\(\medspace = 2^{6} \)
Outer Automorphisms: $C_2\times C_4$, of order \(8\)\(\medspace = 2^{3} \)
Derived length: $2$

The quotient is nonabelian, elementary for $p = 2$ (hence nilpotent, solvable, supersolvable, monomial, and hyperelementary), and metacyclic (hence metabelian).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{11}^2.C_2^3.C_5.C_2^5$
$\operatorname{Aut}(H)$ $C_{11}^2.\GL(2,11)$, of order \(1597200\)\(\medspace = 2^{4} \cdot 3 \cdot 5^{2} \cdot 11^{3} \)
$W$$D_{11}^2:C_{10}$, of order \(4840\)\(\medspace = 2^{3} \cdot 5 \cdot 11^{2} \)

Related subgroups

Centralizer:$C_4$
Normalizer:$C_{11}^2:(C_{10}\times \SD_{16})$
Complements:$C_5\times \SD_{16}$ $C_5\times \SD_{16}$ $C_5\times \SD_{16}$ $C_5\times \SD_{16}$
Minimal over-subgroups:$C_{11}:F_{11}$$C_{11}:D_{22}$$D_{11}^2$
Maximal under-subgroups:$C_{11}^2$$D_{11}$$D_{11}$$D_{11}$$D_{11}$
Autjugate subgroups:19360.h.80.b1.a1

Other information

Möbius function$0$
Projective image$C_{11}^2:(C_{10}\times \SD_{16})$