Subgroup ($H$) information
| Description: | $C_{11}:D_{11}$ |
| Order: | \(242\)\(\medspace = 2 \cdot 11^{2} \) |
| Index: | \(80\)\(\medspace = 2^{4} \cdot 5 \) |
| Exponent: | \(22\)\(\medspace = 2 \cdot 11 \) |
| Generators: |
$b^{2}cd^{11}, d^{4}, cd^{20}$
|
| Derived length: | $2$ |
The subgroup is normal, a semidirect factor, nonabelian, supersolvable (hence solvable and monomial), metabelian, and an A-group.
Ambient group ($G$) information
| Description: | $C_{11}^2:(C_{10}\times \SD_{16})$ |
| Order: | \(19360\)\(\medspace = 2^{5} \cdot 5 \cdot 11^{2} \) |
| Exponent: | \(440\)\(\medspace = 2^{3} \cdot 5 \cdot 11 \) |
| Derived length: | $3$ |
The ambient group is nonabelian and monomial (hence solvable).
Quotient group ($Q$) structure
| Description: | $C_5\times \SD_{16}$ |
| Order: | \(80\)\(\medspace = 2^{4} \cdot 5 \) |
| Exponent: | \(40\)\(\medspace = 2^{3} \cdot 5 \) |
| Automorphism Group: | $C_4^2:C_2^2$, of order \(64\)\(\medspace = 2^{6} \) |
| Outer Automorphisms: | $C_2\times C_4$, of order \(8\)\(\medspace = 2^{3} \) |
| Derived length: | $2$ |
The quotient is nonabelian, elementary for $p = 2$ (hence nilpotent, solvable, supersolvable, monomial, and hyperelementary), and metacyclic (hence metabelian).
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $C_{11}^2.C_2^3.C_5.C_2^5$ |
| $\operatorname{Aut}(H)$ | $C_{11}^2.\GL(2,11)$, of order \(1597200\)\(\medspace = 2^{4} \cdot 3 \cdot 5^{2} \cdot 11^{3} \) |
| $W$ | $D_{11}^2:C_{10}$, of order \(4840\)\(\medspace = 2^{3} \cdot 5 \cdot 11^{2} \) |
Related subgroups
Other information
| Möbius function | $0$ |
| Projective image | $C_{11}^2:(C_{10}\times \SD_{16})$ |