Properties

Label 19360.h.160.a1.a1
Order $ 11^{2} $
Index $ 2^{5} \cdot 5 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{11}^2$
Order: \(121\)\(\medspace = 11^{2} \)
Index: \(160\)\(\medspace = 2^{5} \cdot 5 \)
Exponent: \(11\)
Generators: $cd^{20}, d^{4}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is characteristic (hence normal), a semidirect factor, abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $11$-Sylow subgroup (hence a Hall subgroup), a $p$-group (hence elementary and hyperelementary), and metacyclic.

Ambient group ($G$) information

Description: $C_{11}^2:(C_{10}\times \SD_{16})$
Order: \(19360\)\(\medspace = 2^{5} \cdot 5 \cdot 11^{2} \)
Exponent: \(440\)\(\medspace = 2^{3} \cdot 5 \cdot 11 \)
Derived length:$3$

The ambient group is nonabelian and monomial (hence solvable).

Quotient group ($Q$) structure

Description: $C_{10}\times \SD_{16}$
Order: \(160\)\(\medspace = 2^{5} \cdot 5 \)
Exponent: \(40\)\(\medspace = 2^{3} \cdot 5 \)
Automorphism Group: $C_4^3:C_2^3$, of order \(512\)\(\medspace = 2^{9} \)
Outer Automorphisms: $C_4^2:C_2^2$, of order \(64\)\(\medspace = 2^{6} \)
Nilpotency class: $3$
Derived length: $2$

The quotient is nonabelian, elementary for $p = 2$ (hence nilpotent, solvable, supersolvable, monomial, and hyperelementary), and metabelian.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{11}^2.C_2^3.C_5.C_2^5$
$\operatorname{Aut}(H)$ $\GL(2,11)$, of order \(13200\)\(\medspace = 2^{4} \cdot 3 \cdot 5^{2} \cdot 11 \)
$W$$C_5\times D_4$, of order \(40\)\(\medspace = 2^{3} \cdot 5 \)

Related subgroups

Centralizer:$C_{11}\times C_{44}$
Normalizer:$C_{11}^2:(C_{10}\times \SD_{16})$
Complements:$C_{10}\times \SD_{16}$
Minimal over-subgroups:$C_{11}^2:C_5$$C_{11}\times C_{22}$$C_{11}:D_{11}$$C_{11}:D_{11}$$C_{11}\times D_{11}$$C_{11}\times D_{11}$
Maximal under-subgroups:$C_{11}$$C_{11}$$C_{11}$$C_{11}$

Other information

Möbius function$0$
Projective image$C_{11}^2:(C_{10}\times \SD_{16})$